ﻻ يوجد ملخص باللغة العربية
The formation of merging binary black holes can occur through multiple astrophysical channels such as, e.g., isolated binary evolution and dynamical formation or, alternatively, have a primordial origin. Increasingly large gravitational-wave catalogs of binary black-hole mergers have allowed for the first model selection studies between different theoretical predictions to constrain some of their model uncertainties and branching ratios. In this work, we show how one could add an additional and independent constraint to model selection by using the stochastic gravitational-wave background. In contrast to model selection analyses that have discriminating power only up to the gravitational-wave detector horizons (currently at redshifts $zlesssim 1$ for LIGO-Virgo), the stochastic gravitational-wave background accounts for the redshift integration of all gravitational-wave signals in the Universe. As a working example, we consider the branching ratio results from a model selection study that includes potential contribution from astrophysical and primordial channels. We renormalize the relative contribution of each channel to the detected event rate to compute the total stochastic gravitational-wave background energy density. The predicted amplitude lies below the current observational upper limits of GWTC-2 by LIGO-Virgo, indicating that the results of the model selection analysis are not ruled out by current background limits. Furthermore, given the set of population models and inferred branching ratios, we find that, even though the predicted background will not be detectable by current generation gravitational-wave detectors, it will be accessible by third-generation detectors such as the Einstein Telescope and space-based detectors such as LISA.
We use population inference to explore the impact that uncertainties in the distribution of binary black holes (BBH) have on the astrophysical gravitational-wave background (AGWB). Our results show that the AGWB monopole is sensitive to the nature of
The black hole merging rates inferred after the gravitational-wave detection by Advanced LIGO/VIRGO and the relatively high mass of the progenitors are consistent with models of dark matter made of massive primordial black holes (PBH). PBH binaries e
Primordial black holes (PBHs) are dark matter candidates that span broad mass ranges from $10^{-17}$ $M_odot$ to $sim 100$ $M_odot$. We show that the stochastic gravitational wave background can be a powerful window for the detection of sub-solar mas
We calculate the noise induced in the anisotropies of the astrophysical gravitational-wave background by finite sampling of both the galaxy distribution and the compact binary coalescence event rate. This shot noise leads to a scale-invariant bias te
We investigate the formation and growth of massive black hole (BH) seeds in dusty star-forming galaxies, relying and extending the framework proposed by Boco et al. 2020. Specifically, the latter envisages the migration of stellar compact remnants (n