ﻻ يوجد ملخص باللغة العربية
We revisit the spatial ${lambda}$-Fleming-Viot process introduced in [1]. Particularly, we are interested in the time $T_0$ to the most recent common ancestor for two lineages. We distinguish between the case where the process acts on the entire two-dimensional plane, and on a finite rectangle. Utilizing a differential equation linking $T_0$ with the physical distance between the lineages, we arrive at simple and reasonably accurate approximation schemes for both cases. Furthermore, our analysis enables us to address the question of whether the genealogical process of the model comes down from infinity, which has been partly answered before in [2].
In previous work, we constructed Fleming--Viot-type measure-valued diffusions (and diffusions on a space of interval partitions of the unit interval $[0,1]$) that are stationary with the Poisson--Dirichlet laws with parameters $alphain(0,1)$ and $the
We consider the Moran model in continuous time with two types, mutation, and selection. We concentrate on the ancestral line and its stationary type distribution. Building on work by Fearnhead (J. Appl. Prob. 39 (2002), 38-54) and Taylor (Electron. J
We define the Sampled Moran Genealogy Process, a continuous-time Markov process on the space of genealogies with the demography of the classical Moran process, sampled through time. To do so, we begin by defining the Moran Genealogy Process using a n
The evolutionary process has been modelled in many ways using both stochastic and deterministic models. We develop an algebraic model of evolution in a population of asexually reproducing organisms in which we represent a stochastic walk in phenotype
We study the Fleming-Viot particle process formed by N interacting continuous-time asymmetric random walks on the cycle graph, with uniform killing. We show that this model has a remarkable exact solvability, despite the fact that it is non-reversibl