ترغب بنشر مسار تعليمي؟ اضغط هنا

Rate of coalescence of pairs of lineages in the spatial {lambda}-Fleming-Viot process

365   0   0.0 ( 0 )
 نشر من قبل Johannes Wirtz
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the spatial ${lambda}$-Fleming-Viot process introduced in [1]. Particularly, we are interested in the time $T_0$ to the most recent common ancestor for two lineages. We distinguish between the case where the process acts on the entire two-dimensional plane, and on a finite rectangle. Utilizing a differential equation linking $T_0$ with the physical distance between the lineages, we arrive at simple and reasonably accurate approximation schemes for both cases. Furthermore, our analysis enables us to address the question of whether the genealogical process of the model comes down from infinity, which has been partly answered before in [2].



قيم البحث

اقرأ أيضاً

In previous work, we constructed Fleming--Viot-type measure-valued diffusions (and diffusions on a space of interval partitions of the unit interval $[0,1]$) that are stationary with the Poisson--Dirichlet laws with parameters $alphain(0,1)$ and $the tageq 0$. In this paper, we complete the proof that these processes resolve a conjecture by Feng and Sun (2010) by showing that the processes of ranked atom sizes (or of ranked interval lengths) of these diffusions are members of a two-parameter family of diffusions introduced by Petrov (2009), extending a model by Ethier and Kurtz (1981) in the case $alpha=0$. The latter diffusions are continuum limits of up-down Chinese restaurant processes.
We consider the Moran model in continuous time with two types, mutation, and selection. We concentrate on the ancestral line and its stationary type distribution. Building on work by Fearnhead (J. Appl. Prob. 39 (2002), 38-54) and Taylor (Electron. J . Probab. 12 (2007), 808-847), we characterise this distribution via the fixation probability of the offspring of all individuals of favourable type (regardless of the offsprings types). We concentrate on a finite population and stay with the resulting discrete setting all the way through. This way, we extend previous results and gain new insight into the underlying particle picture.
We define the Sampled Moran Genealogy Process, a continuous-time Markov process on the space of genealogies with the demography of the classical Moran process, sampled through time. To do so, we begin by defining the Moran Genealogy Process using a n ovel representation. We then extend this process to include sampling through time. We derive exact conditional and marginal probability distributions for the sampled process under a stationarity assumption, and an exact expression for the likelihood of any sequence of genealogies it generates. This leads to some interesting observations pertinent to existing phylodynamic methods in the literature. Throughout, our proofs are original and make use of strictly forward-in-time calculations and are exact for all population sizes and sampling processes.
The evolutionary process has been modelled in many ways using both stochastic and deterministic models. We develop an algebraic model of evolution in a population of asexually reproducing organisms in which we represent a stochastic walk in phenotype space, constrained to the edges of an underlying graph representing the genotype, with a time-homogeneous Markov Chain. We show its equivalence to a more standard, explicit stochastic model and show the algebraic models superiority in computational efficiency. Because of this increase in efficiency, we offer the ability to simulate the evolution of much larger populations in more realistic genotype spaces. Further, we show how the algebraic properties of the Markov Chain model can give insight into the evolutionary process and allow for analysis using familiar linear algebraic methods.
105 - Josue Corujo 2020
We study the Fleming-Viot particle process formed by N interacting continuous-time asymmetric random walks on the cycle graph, with uniform killing. We show that this model has a remarkable exact solvability, despite the fact that it is non-reversibl e with non-explicit invariant distribution. Our main results include quantitative propagation of chaos and exponential ergodicity with explicit constants, as well as formulas for covariances at equilibrium in terms of the Chebyshev polynomials. We also obtain a bound uniform in time for the convergence of the proportion of particles in each state when the number of particles goes to infinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا