ﻻ يوجد ملخص باللغة العربية
We consider the Moran model in continuous time with two types, mutation, and selection. We concentrate on the ancestral line and its stationary type distribution. Building on work by Fearnhead (J. Appl. Prob. 39 (2002), 38-54) and Taylor (Electron. J. Probab. 12 (2007), 808-847), we characterise this distribution via the fixation probability of the offspring of all individuals of favourable type (regardless of the offsprings types). We concentrate on a finite population and stay with the resulting discrete setting all the way through. This way, we extend previous results and gain new insight into the underlying particle picture.
In a (two-type) Wright-Fisher diffusion with directional selection and two-way mutation, let $x$ denote todays frequency of the beneficial type, and given $x$, let $h(x)$ be the probability that, among all individuals of todays population, the indivi
We define the Sampled Moran Genealogy Process, a continuous-time Markov process on the space of genealogies with the demography of the classical Moran process, sampled through time. To do so, we begin by defining the Moran Genealogy Process using a n
We revisit the spatial ${lambda}$-Fleming-Viot process introduced in [1]. Particularly, we are interested in the time $T_0$ to the most recent common ancestor for two lineages. We distinguish between the case where the process acts on the entire two-
The evolutionary process has been modelled in many ways using both stochastic and deterministic models. We develop an algebraic model of evolution in a population of asexually reproducing organisms in which we represent a stochastic walk in phenotype
Duality plays an important role in population genetics. It can relate results from forwards-in-time models of allele frequency evolution with those of backwards-in-time genealogical models; a well known example is the duality between the Wright-Fishe