ﻻ يوجد ملخص باللغة العربية
Counterfactual explanations focus on actionable knowledge to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies that relate to outcome changes. Identifying the minimum subset of feature changes needed to action an output change in the decision is an interesting challenge for counterfactual explainers. The DisCERN algorithm introduced in this paper is a case-based counter-factual explainer. Here counterfactuals are formed by replacing feature values from a nearest unlike neighbour (NUN) until an actionable change is observed. We show how widely adopted feature relevance-based explainers (i.e. LIME, SHAP), can inform DisCERN to identify the minimum subset of actionable features. We demonstrate our DisCERN algorithm on five datasets in a comparative study with the widely used optimisation-based counterfactual approach DiCE. Our results demonstrate that DisCERN is an effective strategy to minimise actionable changes necessary to create good counterfactual explanations.
In this work, we develop a technique to produce counterfactual visual explanations. Given a query image $I$ for which a vision system predicts class $c$, a counterfactual visual explanation identifies how $I$ could change such that the system would o
We present a new method for counterfactual explanations (CFEs) based on Bayesian optimisation that applies to both classification and regression models. Our method is a globally convergent search algorithm with support for arbitrary regression models
Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgra
Explainability for machine learning models has gained considerable attention within our research community given the importance of deploying more reliable machine-learning systems. In computer vision applications, generative counterfactual methods in
Our interest in this paper is in the construction of symbolic explanations for predictions made by a deep neural network. We will focus attention on deep relational machines (DRMs, first proposed by H. Lodhi). A DRM is a deep network in which the inp