ترغب بنشر مسار تعليمي؟ اضغط هنا

DisCERN:Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods

156   0   0.0 ( 0 )
 نشر من قبل Anjana Wijekoon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Counterfactual explanations focus on actionable knowledge to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies that relate to outcome changes. Identifying the minimum subset of feature changes needed to action an output change in the decision is an interesting challenge for counterfactual explainers. The DisCERN algorithm introduced in this paper is a case-based counter-factual explainer. Here counterfactuals are formed by replacing feature values from a nearest unlike neighbour (NUN) until an actionable change is observed. We show how widely adopted feature relevance-based explainers (i.e. LIME, SHAP), can inform DisCERN to identify the minimum subset of actionable features. We demonstrate our DisCERN algorithm on five datasets in a comparative study with the widely used optimisation-based counterfactual approach DiCE. Our results demonstrate that DisCERN is an effective strategy to minimise actionable changes necessary to create good counterfactual explanations.

قيم البحث

اقرأ أيضاً

89 - Yash Goyal , Ziyan Wu , Jan Ernst 2019
In this work, we develop a technique to produce counterfactual visual explanations. Given a query image $I$ for which a vision system predicts class $c$, a counterfactual visual explanation identifies how $I$ could change such that the system would o utput a different specified class $c$. To do this, we select a distractor image $I$ that the system predicts as class $c$ and identify spatial regions in $I$ and $I$ such that replacing the identified region in $I$ with the identified region in $I$ would push the system towards classifying $I$ as $c$. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples.
We present a new method for counterfactual explanations (CFEs) based on Bayesian optimisation that applies to both classification and regression models. Our method is a globally convergent search algorithm with support for arbitrary regression models and constraints like feature sparsity and actionable recourse, and furthermore can answer multiple counterfactual questions in parallel while learning from previous queries. We formulate CFE search for regression models in a rigorous mathematical framework using differentiable potentials, which resolves robustness issues in threshold-based objectives. We prove that in this framework, (a) verifying the existence of counterfactuals is NP-complete; and (b) that finding instances using such potentials is CLS-complete. We describe a unified algorithm for CFEs using a specialised acquisition function that composes both expected improvement and an exponential-polynomial (EP) family with desirable properties. Our evaluation on real-world benchmark domains demonstrate high sample-efficiency and precision.
Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgra ph of an input graph that has a strong correlation with the prediction. These explanations are not robust to noise because independently optimizing the correlation for a single input can easily overfit noise. Moreover, they do not align well with human intuition because removing an identified subgraph from an input graph does not necessarily change the prediction result. In this paper, we propose a novel method to generate robust counterfactual explanations on GNNs by explicitly modelling the common decision logic of GNNs on similar input graphs. Our explanations are naturally robust to noise because they are produced from the common decision boundaries of a GNN that govern the predictions of many similar input graphs. The explanations also align well with human intuition because removing the set of edges identified by an explanation from the input graph changes the prediction significantly. Exhaustive experiments on many public datasets demonstrate the superior performance of our method.
Explainability for machine learning models has gained considerable attention within our research community given the importance of deploying more reliable machine-learning systems. In computer vision applications, generative counterfactual methods in dicate how to perturb a models input to change its prediction, providing details about the models decision-making. Current counterfactual methods make ambiguous interpretations as they combine multiple biases of the model and the data in a single counterfactual interpretation of the models decision. Moreover, these methods tend to generate trivial counterfactuals about the models decision, as they often suggest to exaggerate or remove the presence of the attribute being classified. For the machine learning practitioner, these types of counterfactuals offer little value, since they provide no new information about undesired model or data biases. In this work, we propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss to uncover multiple valuable explanations about the models prediction. Further, we introduce a mechanism to prevent the model from producing trivial explanations. Experiments on CelebA and Synbols demonstrate that our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods. We will publish the code.
Our interest in this paper is in the construction of symbolic explanations for predictions made by a deep neural network. We will focus attention on deep relational machines (DRMs, first proposed by H. Lodhi). A DRM is a deep network in which the inp ut layer consists of Boolean-valued functions (features) that are defined in terms of relations provided as domain, or background, knowledge. Our DRMs differ from those proposed by Lodhi, which use an Inductive Logic Programming (ILP) engine to first select features (we use random selections from a space of features that satisfies some approximate constraints on logical relevance and non-redundancy). But why do the DRMs predict what they do? One way of answering this is the LIME setting, in which readable proxies for a black-box predictor. The proxies are intended only to model the predictions of the black-box in local regions of the instance-space. But readability alone may not enough: to be understandable, the local models must use relevant concepts in an meaningful manner. We investigate the use of a Bayes-like approach to identify logical proxies for local predictions of a DRM. We show: (a) DRMs with our randomised propositionalization method achieve state-of-the-art predictive performance; (b) Models in first-order logic can approximate the DRMs prediction closely in a small local region; and (c) Expert-provided relevance information can play the role of a prior to distinguish between logical explanations that perform equivalently on prediction alone.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا