ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a new non-monotone conjugate gradient method for solving unconstrained nonlinear optimization problems. We first modify the non-monotone line search method by introducing a new trigonometric function to calculate the non-monotone parameter, which plays an essential role in the algorithms efficiency. Then, we apply a convex combination of the Barzilai-Borwein method for calculating the value of step size in each iteration. Under some suitable assumptions, we prove that the new algorithm has the global convergence property. The efficiency and effectiveness of the proposed method are determined in practice by applying the algorithm to some standard test problems and non-negative matrix factorization problems.
The Barzilai-Borwein (BB) method has demonstrated great empirical success in nonlinear optimization. However, the convergence speed of BB method is not well understood, as the known convergence rate of BB method for quadratic problems is much worse t
In this paper we explore avenues for improving the reliability of dimensionality reduction methods such as Non-Negative Matrix Factorization (NMF) as interpretive exploratory data analysis tools. We first explore the difficulties of the optimization
Dimensionality reduction is considered as an important step for ensuring competitive performance in unsupervised learning such as anomaly detection. Non-negative matrix factorization (NMF) is a popular and widely used method to accomplish this goal.
In this article, we study algorithms for nonnegative matrix factorization (NMF) in various applications involving streaming data. Utilizing the continual nature of the data, we develop a fast two-stage algorithm for highly efficient and accurate NMF.
The Conditional Gradient Method is generalized to a class of non-smooth non-convex optimization problems with many applications in machine learning. The proposed algorithm iterates by minimizing so-called model functions over the constraint set. Comp