ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetric space $lambda$-model exchange algebra from 4d holomorphic Chern-Simons theory

239   0   0.0 ( 0 )
 نشر من قبل David M. Schmidtt
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف David M. Schmidtt




اسأل ChatGPT حول البحث

We derive, within the Hamiltonian formalism, the classical exchange algebra of a lambda deformed string sigma model in a symmetric space directly from a 4d holomorphic Chern-Simons theory. The explicit forms of the extended Lax connection and R-matrix entering the Maillet bracket of the lambda model are explained from a symmetry principle. This approach, based on a gauge theory, may provide a mechanism for taming the non-ultralocality that afflicts most of the integrable string theories propagating in coset spaces.

قيم البحث

اقرأ أيضاً

We derive the Faddeev-Reshetikhin (FR) model from a four-dimensional Chern- Simons theory with two order surface defects by following the work by Costello and Yamazaki [arXiv:1908.02289]. Then we present a trigonometric deformation of the FR model by employing a boundary condition with an R-operator of Drinfeld-Jimbo type. This is a generalization of the work by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824] from the disorder surface defect case to the order one.
We study $eta$-deformations of principal chiral model (PCM) from the viewpoint of a 4D Chern-Simons (CS) theory. The $eta$-deformed PCM has originally been derived from the 4D CS theory by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824]. The der ivation is based on a twist function in the rational description. On the other hand, we start with a twist function in the trigonometric description and discuss possible boundary conditions. We show that a certain boundary condition reproduces the usual $eta$-deformed PCM and another one leads to a new kind of Yang-Baxter deformation.
Recently, a variety of deformed $T^{1,1}$ manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [arXiv:2010.05573]. We refer to the NLSMs with the integrable def ormed $T^{1,1}$ as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic $T^{1,1}$ model and 2) a $G/H$ $lambda$-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.
We present homogeneous Yang-Baxter deformations of the AdS$_5times$S$^5$ supercoset sigma model as boundary conditions of a 4D Chern-Simons theory. We first generalize the procedure for the 2D principal chiral model developed by Delduc et al [arXiv:1 909.13824] so as to reproduce the 2D symmetric coset sigma model, and specify boundary conditions governing homogeneous Yang-Baxter deformations. Then the conditions are applicable for the AdS$_5times$S$^5$ supercoset sigma model case as well. In addition, homogeneous bi-Yang-Baxter deformation is also discussed.
158 - R. Diaz , F. Gomez , M. Pinilla 2020
We evaluate a 5-dimensional Randall Sundrum type metric in the Lagrangian of the Einstein-Chern-Simons gravity, and then we derive an action and its corresponding field equations, for a 4-dimensional brane embedded in the 5-dimensional space-time of the theory, which in the limit l--0 leads to the 4-dimensional general relativity with cosmological constant. An interpretation of the h*a matter field present in the Einstein-Chern-Simons gravity action is given. As an application, we find some Friedmann-Lemaitre-Robertson-Walker cosmological solutions that exhibit accelerated behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا