ﻻ يوجد ملخص باللغة العربية
How much time does it take two molecules to react? If a reaction occurs upon contact, the answer to this question boils down to the classic first-passage time problem: find the random time it takes the two molecules to meet. However, this is not always the case as molecules switch stochastically between reactive and non-reactive states. In such cases, the reaction is said to be ``gated by the internal states of the molecules involved which could have a dramatic influence on kinetics. A unified, continuous-time, approach to gated reactions on networks was presented in [Phys. Rev. Lett. 127, 018301, 2021]. Here, we build on this recent advancement and develop an analogous discrete-time version of the theory. Similar to continuous-time, we employ a renewal approach to show that the gated reaction time can always be expressed in terms of the corresponding ungated first-passage and return times; which yields formulas for the generating function of the gated reaction-time distribution and its corresponding mean and variance. In cases where the mean reaction time diverges, we show that the long-time asymptotics of the gated problem is inherited from its ungated counterpart, where only the pre-factor of the power law tail changes. The discretization of time also gives rise to new phenomena that do not exist in the continuous-time analogue. Crucially, when the internal gating dynamics is in, or out of, phase with the spatial process governing molecular encounters resonance and anti-resonance phenomena emerge. These phenomena are illustrated using two case studies which also serve to show how the general approach presented herein greatly simplifies the analysis of gated reactions.
We introduce a class of integrable dynamical systems of interacting classical matrix-valued fields propagating on a discrete space-time lattice, realized as many-body circuits built from elementary symplectic two-body maps. The models provide an effi
We construct an integrable lattice model of classical interacting spins in discrete space-time, representing a discrete-time analogue of the lattice Landau-Lifshitz ferromagnet with uniaxial anisotropy. As an application we use this explicit discrete
For many real physico-chemical complex systems detailed mechanism includes both reversible and irreversible reactions. Such systems are typical in homogeneous combustion and heterogeneous catalytic oxidation. Most complex enzyme reactions include irr
We introduce a deterministic SO(3) invariant dynamics of classical spins on a discrete space-time lattice and prove its complete integrability by explicitly finding a related non-constant (baxterized) solution of the set-theoretic quantum Yang-Baxter
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. The fundamental solution (for the {Cauchy} probl