ﻻ يوجد ملخص باللغة العربية
We report observations of a relatively long period of 3He-rich solar energetic particles (SEPs) measured by Solar Orbiter. The period consists of several well-resolved ion injections. The high-resolution STEREO-A imaging observations reveal that the injections coincide with EUV jets/brightenings near the east limb, not far from the nominal magnetic connection of Solar Orbiter. The jets originated in two adjacent, large, and complex active regions as observed by the Solar Dynamics Observatory when the regions rotated to the Earths view. It appears that the sustained ion injections were related to the complex configuration of the sunspot group and the long period of 3He-rich SEPs to the longitudinal extent covered by the group during the analyzed time period.
3He-rich solar energetic particles (SEPs) are believed to be accelerated in solar flares or jets by a mechanism that depends on the ion charge-to-mass (Q/M) ratio. It implies that the flare plasma characteristics (e.g., temperature) may be effective
In addition to their anomalous abundances, 3He-rich solar energetic particles (SEPs) show puzzling energy spectral shapes varying from rounded forms to power laws where the later are characteristics of shock acceleration. Solar sources of these parti
Solar sources of suprathermal (<1 MeV/nucleon) 3He-rich solar energetic particles (SEPs) have been commonly associated with jets originating in small, compact active regions at the periphery of near-equatorial coronal holes. Sources of relatively rar
Particle acceleration in stellar flares is ubiquitous in the Universe, however, our Sun is the only astrophysical object where energetic particles and their source flares can both be observed. The acceleration mechanism in solar flares, tremendously
We study the origin of 3He-rich solar energetic particles (<1 MeV/nucleon) that are observed consecutively on STEREO-B, ACE, and STEREO-A spacecraft when they are separated in heliolongitude by more than 90{deg}. The 3He-rich period on STEREO-B and S