ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy spectra of 3He-rich solar energetic particles associated with coronal waves

159   0   0.0 ( 0 )
 نشر من قبل Radoslav Bucik
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In addition to their anomalous abundances, 3He-rich solar energetic particles (SEPs) show puzzling energy spectral shapes varying from rounded forms to power laws where the later are characteristics of shock acceleration. Solar sources of these particles have been often associated with jets and narrow CMEs, which are the signatures of magnetic reconnection involving open field. Recent reports on new associations with large-scale EUV waves bring new insights on acceleration and transport of 3He-rich SEPs in the corona. We examined energy spectra for 32 3He-rich SEP events observed by ACE at L1 near solar minimum in 2007-2010 and compared the spectral shapes with solar flare signatures obtained from STEREO EUV images. We found the events with jets or brightenings tend to be associated with rounded spectra and the events with coronal waves with power laws. This suggests that coronal waves may be related to the unknown second stage mechanism commonly used to interpret spectral forms of 3He-rich SEPs.



قيم البحث

اقرأ أيضاً

3He-rich solar energetic particles (SEPs) are believed to be accelerated in solar flares or jets by a mechanism that depends on the ion charge-to-mass (Q/M) ratio. It implies that the flare plasma characteristics (e.g., temperature) may be effective in determining the elemental abundances of 3He-rich SEPs. This study examines the relation between the suprathermal (<0.2 MeV/nuc) abundances of the He-Fe ions measured on the Advanced Composition Explorer and temperature in the solar sources for 24 3He-rich SEP events in the period 2010-2015. The differential emission measure technique is applied to derive the temperature of the source regions from the extreme ultraviolet imaging observations on the Solar Dynamics Observatory. The obtained temperature distribution peaks at 2.0-2.5 MK that is surprisingly consistent with earlier findings based on in-situ elemental abundance or charge state measurements. We have found a significant anti-correlation between 3He/4He ratio and solar source temperature with a coefficient -0.6. It is most likely caused by non-charge-stripping processes, as both isotopes would be fully ionized in the inferred temperature range. This study shows that the elemental ratios 4He/O, N/O, Ne/O, Si/O, S/O, Ca/O, Fe/O generally behave with temperature as expected from abundance enhancement calculations at ionization equilibrium. The C and Mg, the two species with small changes in the Q/M ratio in the obtained temperature range, show no such behavior with temperature and could be influenced by similar processes as for the 3He/4He ratio.
Solar sources of suprathermal (<1 MeV/nucleon) 3He-rich solar energetic particles (SEPs) have been commonly associated with jets originating in small, compact active regions at the periphery of near-equatorial coronal holes. Sources of relatively rar e, high-energy (>10 MeV/nucleon) 3He-rich SEPs remain unexplored. Here we present two of the most intense 3He-rich (3He/4He>1) SEP events of the current solar cycle 24 measured on the Advanced Composition Explorer at energy >10 MeV/nucleon. Although 3He shows high intensities, Z>2 ions are below the detection threshold. The events are accompanied by type-III radio bursts, but no type-II emission as typically seen for suprathermal 3He-rich SEPs. The corresponding solar sources were analyzed using high-resolution, extreme-ultraviolet imaging and photospheric magnetic field observations on the Solar Dynamics Observatory. We find the sources of these events associated with jets originating at the boundary of large sunspots with complex beta-gamma-delta magnetic configuration. Thus, details of the underlying photospheric field apparently are important to produce 3He to high energies in the examined events.
We report observations of a relatively long period of 3He-rich solar energetic particles (SEPs) measured by Solar Orbiter. The period consists of several well-resolved ion injections. The high-resolution STEREO-A imaging observations reveal that the injections coincide with EUV jets/brightenings near the east limb, not far from the nominal magnetic connection of Solar Orbiter. The jets originated in two adjacent, large, and complex active regions as observed by the Solar Dynamics Observatory when the regions rotated to the Earths view. It appears that the sustained ion injections were related to the complex configuration of the sunspot group and the long period of 3He-rich SEPs to the longitudinal extent covered by the group during the analyzed time period.
The scenario of twin coronal mass ejections (CMEs), i.e., a fast and wide primary CME (priCME) preceded by previous CMEs (preCMEs), has been found to be favorable to a more efficient particle acceleration in large solar energetic particle (SEP) event s. Here, we study 19 events during 2007--2014 associated with twin-CME eruptions but without large SEP observations at L1 point. We combine remote-sensing and in situ observations from multiple spacecraft to investigate the role of magnetic connectivity in SEP detection and the CME information in 3-dimensional (3D) space. We study one-on-one correlations of the priCME 3D speed, flare intensity, suprathermal backgrounds, and height of CME-CME interaction with the SEP intensity. Among these, the priCME speed is found to correlate with the SEP peak intensity at the highest level. We use the projection correlation method to analyze the correlations between combinations of these multiple independent factors and the SEP peak intensity. We find that the only combination of two or more parameters that has higher correlation with the SEP peak intensity than the CME speed is the CME speed combined with the propagation direction. This further supports the dominant role of the priCME in controlling the SEP enhancements, and emphasizes the consideration of the latitudinal effect. Overall, the magnetic connectivity in longitude as well as latitude and the relatively lower priCME speed may explain the existence of the twin-CME SEP-poor events. The role of the barrier effect of preCME(s) is discussed for an event on 2013 October 28.
154 - R. Bucik , D. E. Innes , U. Mall 2014
We study the origin of 3He-rich solar energetic particles (<1 MeV/nucleon) that are observed consecutively on STEREO-B, ACE, and STEREO-A spacecraft when they are separated in heliolongitude by more than 90{deg}. The 3He-rich period on STEREO-B and S TEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE 3He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 3He-rich events with the same sizeable active region producing X-ray flares accompanied by prompt electron events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous 3He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged active region near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of 1) solar regions with long-lasting conditions for 3He acceleration and 2) solar energetic 3He that is temporary confined/re-accelerated in interplanetary space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا