ترغب بنشر مسار تعليمي؟ اضغط هنا

Guiding Topic Flows in the Generative Chatbot by Enhancing the ConceptNet with the Conversation Corpora

303   0   0.0 ( 0 )
 نشر من قبل Pengda Si
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human conversations consist of reasonable and natural topic flows, which are observed as the shifts of the mentioned concepts across utterances. Previous chatbots that incorporate the external commonsense knowledge graph prove that modeling the concept shifts can effectively alleviate the dull and uninformative response dilemma. However, there still exists a gap between the concept relations in the natural conversation and those in the external commonsense knowledge graph, which is an issue to solve. Specifically, the concept relations in the external commonsense knowledge graph are not intuitively built from the conversational scenario but the world knowledge, which makes them insufficient for the chatbot construction. To bridge the above gap, we propose the method to supply more concept relations extracted from the conversational corpora and reconstruct an enhanced concept graph for the chatbot construction. In addition, we present a novel, powerful, and fast graph encoding architecture named the Edge-Transformer to replace the traditional GNN architecture. Experimental results on the Reddit conversation dataset indicate our proposed method significantly outperforms strong baseline systems and achieves new SOTA results. Further analysis individually proves the effectiveness of the enhanced concept graph and the Edge-Transformer architecture.



قيم البحث

اقرأ أيضاً

Legacy procedures for topic modelling have generally suffered problems of overfitting and a weakness towards reconstructing sparse topic structures. With motivation from a consumer-generated corpora, this paper proposes semiparametric topic model, a two-step approach utilizing nonnegative matrix factorization and semiparametric regression in topic modeling. The model enables the reconstruction of sparse topic structures in the corpus and provides a generative model for predicting topics in new documents entering the corpus. Assuming the presence of auxiliary information related to the topics, this approach exhibits better performance in discovering underlying topic structures in cases where the corpora are small and limited in vocabulary. In an actual consumer feedback corpus, the model also demonstrably provides interpretable and useful topic definitions comparable with those produced by other methods.
86 - Yi Cheng , Siyao Li , Bang Liu 2021
This paper explores the task of Difficulty-Controllable Question Generation (DCQG), which aims at generating questions with required difficulty levels. Previous research on this task mainly defines the difficulty of a question as whether it can be co rrectly answered by a Question Answering (QA) system, lacking interpretability and controllability. In our work, we redefine question difficulty as the number of inference steps required to answer it and argue that Question Generation (QG) systems should have stronger control over the logic of generated questions. To this end, we propose a novel framework that progressively increases question difficulty through step-by-step rewriting under the guidance of an extracted reasoning chain. A dataset is automatically constructed to facilitate the research, on which extensive experiments are conducted to test the performance of our method.
We propose a novel model for a topic-aware chatbot by combining the traditional Recurrent Neural Network (RNN) encoder-decoder model with a topic attention layer based on Nonnegative Matrix Factorization (NMF). After learning topic vectors from an au xiliary text corpus via NMF, the decoder is trained so that it is more likely to sample response words from the most correlated topic vectors. One of the main advantages in our architecture is that the user can easily switch the NMF-learned topic vectors so that the chatbot obtains desired topic-awareness. We demonstrate our model by training on a single conversational data set which is then augmented with topic matrices learned from different auxiliary data sets. We show that our topic-aware chatbot not only outperforms the non-topic counterpart, but also that each topic-aware model qualitatively and contextually gives the most relevant answer depending on the topic of question.
99 - Yanran Li , Ke Li , Hongke Ning 2021
Existing emotion-aware conversational models usually focus on controlling the response contents to align with a specific emotion class, whereas empathy is the ability to understand and concern the feelings and experience of others. Hence, it is criti cal to learn the causes that evoke the users emotion for empathetic responding, a.k.a. emotion causes. To gather emotion causes in online environments, we leverage counseling strategies and develop an empathetic chatbot to utilize the causal emotion information. On a real-world online dataset, we verify the effectiveness of the proposed approach by comparing our chatbot with several SOTA methods using automatic metrics, expert-based human judgements as well as user-based online evaluation.
Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-th e-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا