ترغب بنشر مسار تعليمي؟ اضغط هنا

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency

119   0   0.0 ( 0 )
 نشر من قبل Yonggan Fu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent breakthroughs of deep neural networks (DNNs) and the advent of billions of Internet of Things (IoT) devices have excited an explosive demand for intelligent IoT devices equipped with domain-specific DNN accelerators. However, the deployment of DNN accelerator enabled intelligent functionality into real-world IoT devices still remains particularly challenging. First, powerful DNNs often come at prohibitive complexities, whereas IoT devices often suffer from stringent resource constraints. Second, while DNNs are vulnerable to adversarial attacks especially on IoT devices exposed to complex real-world environments, many IoT applications require strict security. Existing DNN accelerators mostly tackle only one of the two aforementioned challenges (i.e., efficiency or adversarial robustness) while neglecting or even sacrificing the other. To this end, we propose a 2-in-1 Accelerator, an integrated algorithm-accelerator co-design framework aiming at winning both the adversarial robustness and efficiency of DNN accelerators. Specifically, we first propose a Random Precision Switch (RPS) algorithm that can effectively defend DNNs against adversarial attacks by enabling random DNN quantization as an in-situ model switch. Furthermore, we propose a new precision-scalable accelerator featuring (1) a new precision-scalable MAC unit architecture which spatially tiles the temporal MAC units to boost both the achievable efficiency and flexibility and (2) a systematically optimized dataflow that is searched by our generic accelerator optimizer. Extensive experiments and ablation studies validate that our 2-in-1 Accelerator can not only aggressively boost both the adversarial robustness and efficiency of DNN accelerators under various attacks, but also naturally support instantaneous robustness-efficiency trade-offs adapting to varied resources without the necessity of DNN retraining.

قيم البحث

اقرأ أيضاً

Deep neural network (DNN) accelerators received considerable attention in recent years due to the potential to save energy compared to mainstream hardware. Low-voltage operation of DNN accelerators allows to further reduce energy consumption signific antly, however, causes bit-level failures in the memory storing the quantized DNN weights. Furthermore, DNN accelerators have been shown to be vulnerable to adversarial attacks on voltage controllers or individual bits. In this paper, we show that a combination of robust fixed-point quantization, weight clipping, as well as random bit error training (RandBET) or adversarial bit error training (AdvBET) improves robustness against random or adversarial bit errors in quantized DNN weights significantly. This leads not only to high energy savings for low-voltage operation as well as low-precision quantization, but also improves security of DNN accelerators. Our approach generalizes across operating voltages and accelerators, as demonstrated on bit errors from profiled SRAM arrays, and achieves robustness against both targeted and untargeted bit-level attacks. Without losing more than 0.8%/2% in test accuracy, we can reduce energy consumption on CIFAR10 by 20%/30% for 8/4-bit quantization using RandBET. Allowing up to 320 adversarial bit errors, AdvBET reduces test error from above 90% (chance level) to 26.22% on CIFAR10.
289 - Tao Bai , Jinqi Luo , Jun Zhao 2021
Adversarial training is one of the most effective approaches defending against adversarial examples for deep learning models. Unlike other defense strategies, adversarial training aims to promote the robustness of models intrinsically. During the las t few years, adversarial training has been studied and discussed from various aspects. A variety of improvements and developments of adversarial training are proposed, which were, however, neglected in existing surveys. For the first time in this survey, we systematically review the recent progress on adversarial training for adversarial robustness with a novel taxonomy. Then we discuss the generalization problems in adversarial training from three perspectives. Finally, we highlight the challenges which are not fully tackled and present potential future directions.
Deep neural network (DNN) accelerators received considerable attention in past years due to saved energy compared to mainstream hardware. Low-voltage operation of DNN accelerators allows to further reduce energy consumption significantly, however, ca uses bit-level failures in the memory storing the quantized DNN weights. In this paper, we show that a combination of robust fixed-point quantization, weight clipping, and random bit error training (RandBET) improves robustness against random bit errors in (quantized) DNN weights significantly. This leads to high energy savings from both low-voltage operation as well as low-precision quantization. Our approach generalizes across operating voltages and accelerators, as demonstrated on bit errors from profiled SRAM arrays. We also discuss why weight clipping alone is already a quite effective way to achieve robustness against bit errors. Moreover, we specifically discuss the involved trade-offs regarding accuracy, robustness and precision: Without losing more than 1% in accuracy compared to a normally trained 8-bit DNN, we can reduce energy consumption on CIFAR-10 by 20%. Higher energy savings of, e.g., 30%, are possible at the cost of 2.5% accuracy, even for 4-bit DNNs.
The recent breakthroughs and prohibitive complexities of Deep Neural Networks (DNNs) have excited extensive interest in domain-specific DNN accelerators, among which optical DNN accelerators are particularly promising thanks to their unprecedented po tential of achieving superior performance-per-watt. However, the development of optical DNN accelerators is much slower than that of electrical DNN accelerators. One key challenge is that while many techniques have been developed to facilitate the development of electrical DNN accelerators, techniques that support or expedite optical DNN accelerator design remain much less explored, limiting both the achievable performance and the innovation development of optical DNN accelerators. To this end, we develop the first-of-its-kind framework dubbed O-HAS, which for the first time demonstrates automated Optical Hardware Accelerator Search for boosting both the acceleration efficiency and development speed of optical DNN accelerators. Specifically, our O-HAS consists of two integrated enablers: (1) an O-Cost Predictor, which can accurately yet efficiently predict an optical accelerators energy and latency based on the DNN model parameters and the optical accelerator design; and (2) an O-Search Engine, which can automatically explore the large design space of optical DNN accelerators and identify the optimal accelerators (i.e., the micro-architectures and algorithm-to-accelerator mapping methods) in order to maximize the target acceleration efficiency. Extensive experiments and ablation studies consistently validate the effectiveness of both our O-Cost Predictor and O-Search Engine as well as the excellent efficiency of O-HAS generated optical accelerators.
Modern day computing increasingly relies on specialization to satiate growing performance and efficiency requirements. A core challenge in designing such specialized hardware architectures is how to perform mapping space search, i.e., search for an o ptimal mapping from algorithm to hardware. Prior work shows that choosing an inefficient mapping can lead to multiplicative-factor efficiency overheads. Additionally, the search space is not only large but also non-convex and non-smooth, precluding advanced search techniques. As a result, previous works are forced to implement mapping space search using expert choices or sub-optimal search heuristics. This work proposes Mind Mappings, a novel gradient-based search method for algorithm-accelerator mapping space search. The key idea is to derive a smooth, differentiable approximation to the otherwise non-smooth, non-convex search space. With a smooth, differentiable approximation, we can leverage efficient gradient-based search algorithms to find high-quality mappings. We extensively compare Mind Mappings to black-box optimization schemes used in prior work. When tasked to find mappings for two important workloads (CNN and MTTKRP), the proposed search finds mappings that achieve an average $1.40times$, $1.76times$, and $1.29times$ (when run for a fixed number of steps) and $3.16times$, $4.19times$, and $2.90times$ (when run for a fixed amount of time) better energy-delay product (EDP) relative to Simulated Annealing, Genetic Algorithms and Reinforcement Learning, respectively. Meanwhile, Mind Mappings returns mappings with only $5.32times$ higher EDP than a possibly unachievable theoretical lower-bound, indicating proximity to the global optima.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا