ﻻ يوجد ملخص باللغة العربية
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.
Fact-based Visual Question Answering (FVQA), a challenging variant of VQA, requires a QA-system to include facts from a diverse knowledge graph (KG) in its reasoning process to produce an answer. Large KGs, especially common-sense KGs, are known to b
This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and gen
In this paper, we propose a novel Knowledge-based Embodied Question Answering (K-EQA) task, in which the agent intelligently explores the environment to answer various questions with the knowledge. Different from explicitly specifying the target obje
Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the models prediction rationale. In this paper, we propose
We focus on multiple-choice question answering (QA) tasks in subject areas such as science, where we require both broad background knowledge and the facts from the given subject-area reference corpus. In this work, we explore simple yet effective met