ﻻ يوجد ملخص باللغة العربية
In this work we show that the Weil-Petersson volume (which coincides with the CM degree) in the case of weighted points in the projective line is continuous when approaching the Calabi-Yau geometry from the Fano geometry. More specifically, the CM volume computed via localization converges to the geometric volume, computed by McMullen with different techniques, when the sum of the weights approaches the Calabi-Yau geometry.
A relatively fast algorithm for evaluating Weil-Petersson volumes of moduli spaces of complex algebraic curves is proposed. On the basis of numerical data, a conjectural large genus asymptotics of the Weil-Petersson volumes is computed. Asymptotic fo
Inspired by mirror symmetry, we investigate some differential geometric aspects of the space of Bridgeland stability conditions on a Calabi-Yau triangulated category. The aim is to develop theory of Weil-Petersson geometry on the stringy Kahler modul
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n;
In this paper, we consider the CM line bundle on the K-moduli space, i.e., the moduli space parametrizing K-polystable Fano varieties. We prove it is ample on any proper subspace parametrizing reduced uniformly K-stable Fano varieties which conjectur
Let $X$ be a compact connected Riemann surface and $D$ an effective divisor on $X$. Let ${mathcal N}_H(r,d)$ denote the moduli space of $D$-twisted stable Higgs bundles (a special class of Hitchin pairs) on $X$ of rank $r$ and degree $d$. It is known