ترغب بنشر مسار تعليمي؟ اضغط هنا

Symplectic geometry of a moduli space of framed Higgs bundles

258   0   0.0 ( 0 )
 نشر من قبل Ana Pe\\'on-Nieto
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ be a compact connected Riemann surface and $D$ an effective divisor on $X$. Let ${mathcal N}_H(r,d)$ denote the moduli space of $D$-twisted stable Higgs bundles (a special class of Hitchin pairs) on $X$ of rank $r$ and degree $d$. It is known that ${mathcal N}_H(r,d)$ has a natural holomorphic Poisson structure which is in fact symplectic if and only if $D$ is the zero divisor. We prove that ${mathcal N}_H(r,d)$ admits a natural enhancement to a holomorphic symplectic manifold which is called here ${mathcal M}_H(r,d)$. This ${mathcal M}_H(r,d)$ is constructed by trivializing, over $D$, the restriction of the vector bundles underlying the $D$-twisted Higgs bundles; such objects are called here as framed Higgs bundles. We also investigate the symplectic structure on the moduli space ${mathcal M}_H(r,d)$ of framed Higgs bundles as well as the Hitchin system associated to it.



قيم البحث

اقرأ أيضاً

Let $X$ be a compact connected Riemann surface, $D, subset, X$ a reduced effective divisor, $G$ a connected complex reductive affine algebraic group and $H_x, subsetneq, G_x$ a Zariski closed subgroup for every $x, in, D$. A framed principal $G$--bun dle is a pair $(E_G,, phi)$, where $E_G$ is a holomorphic principal $G$--bundle on $X$ and $phi$ assigns to each $x, in, D$ a point of the quotient space $(E_G)_x/H_x$. A framed $G$--Higgs bundle is a framed principal $G$--bundle $(E_G,, phi)$ together with a section $theta, in, H^0(X,, text{ad}(E_G)otimes K_Xotimes{mathcal O}_X(D))$ such that $theta(x)$ is compatible with the framing $phi$ for every $x, in, D$. We construct a holomorphic symplectic structure on the moduli space $mathcal{M}_{FH}(G)$ of stable framed $G$--Higgs bundles. Moreover, we prove that the natural morphism from $mathcal{M}_{FH}(G)$ to the moduli space $mathcal{M}_{H}(G)$ of $D$-twisted $G$--Higgs bundles $(E_G,, theta)$ that forgets the framing, is Poisson. These results generalize cite{BLP} where $(G,, {H_x}_{xin D})$ is taken to be $(text{GL}(r,{mathbb C}),, {text{I}_{rtimes r}}_{xin D})$. We also investigate the Hitchin system for $mathcal{M}_{FH}(G)$ and its relationship with that for $mathcal{M}_{H}(G)$.
Let X be an irreducible smooth complex projective curve of genus g>2, and let x be a fixed point. A framed bundle is a pair (E,phi), where E is a vector bundle over X, of rank r and degree d, and phi:E_xto C^r is a non-zero homomorphism. There is a n otion of (semi)stability for framed bundles depending on a parameter tau>0, which gives rise to the moduli space of tau-semistable framed bundles M^tau. We prove a Torelli theorem for M^tau, for tau>0 small enough, meaning, the isomorphism class of the one-pointed curve (X,x), and also the integer r, are uniquely determined by the isomorphism class of the variety M^tau.
183 - Camilla Felisetti 2018
Let $C$ be a smooth projective curve of genus $2$. Following a method by O Grady, we construct a semismall desingularization $tilde{mathcal{M}}_{Dol}^G$ of the moduli space $mathcal{M}_{Dol}^G$ of semistable $G$-Higgs bundles of degree 0 for $G=GL(2, mathbb{C}), SL(2,mathbb{C})$. By the decomposition theorem by Beilinson, Bernstein, Deligne one can write the cohomology of $tilde{mathcal{M}}_{Dol}^G$ as a direct sum of the intersection cohomology of $mathcal{M}_{Dol}^G$ plus other summands supported on the singular locus. We use this splitting to compute the intersection cohomology of $mathcal{M}_{Dol}^G$ and prove that the mixed Hodge structure on it is actually pure, in analogy with what happens to ordinary cohomology in the smooth case of coprime rank and degree.
The moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan type of the vector bundle underlying a Higgs bundle. While these two stratification coincide in the case of rank two Higgs bundles, this is not the case in higher rank. In this paper we analyze the relation between the two stratifications for the moduli space of rank three Higgs bundles.
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0 $-small Hamiltonian isotopy. Furthermore for generic such isotopies the number of intersection points equals at least the sum of the free Betti numbers of the Morse-Novikov homology of $beta$. We also give a short exposition of conformal symplectic geometry, aimed at readers who are familiar with (standard) symplectic or contact geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا