ﻻ يوجد ملخص باللغة العربية
The ability to recognise emotions lends a conversational artificial intelligence a human touch. While emotions in chit-chat dialogues have received substantial attention, emotions in task-oriented dialogues have been largely overlooked despite having an equally important role, such as to signal failure or success. Existing emotion-annotated task-oriented corpora are limited in size, label richness, and public availability, creating a bottleneck for downstream tasks. To lay a foundation for studies on emotions in task-oriented dialogues, we introduce EmoWOZ, a large-scale manually emotion-annotated corpus of task-oriented dialogues. EmoWOZ is based on MultiWOZ, a multi-domain task-oriented dialogue dataset. It contains more than 11K dialogues with more than 83K emotion annotations of user utterances. In addition to Wizzard-of-Oz dialogues from MultiWOZ, we collect human-machine dialogues within the same set of domains to sufficiently cover the space of various emotions that can happen during the lifetime of a data-driven dialogue system. To the best of our knowledge, this is the first large-scale open-source corpus of its kind. We propose a novel emotion labelling scheme, which is tailored to task-oriented dialogues. We report a set of experimental results to show the usability of this corpus for emotion recognition and state tracking in task-oriented dialogues.
This paper presents a large-scale corpus for non-task-oriented dialogue response selection, which contains over 27K distinct prompts more than 82K responses collected from social media. To annotate this corpus, we define a 5-grade rating scheme: bad,
Recent reinforcement learning algorithms for task-oriented dialogue system absorbs a lot of interest. However, an unavoidable obstacle for training such algorithms is that annotated dialogue corpora are often unavailable. One of the popular approache
Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local uttera
Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-orie
This paper presents the Frames dataset (Frames is available at http://datasets.maluuba.com/Frames), a corpus of 1369 human-human dialogues with an average of 15 turns per dialogue. We developed this dataset to study the role of memory in goal-oriente