ترغب بنشر مسار تعليمي؟ اضغط هنا

SO-SLAM: Semantic Object SLAM with Scale Proportional and Symmetrical Texture Constraints

132   0   0.0 ( 0 )
 نشر من قبل Ziwei Liao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object SLAM introduces the concept of objects into Simultaneous Localization and Mapping (SLAM) and helps understand indoor scenes for mobile robots and object-level interactive applications. The state-of-art object SLAM systems face challenges such as partial observations, occlusions, unobservable problems, limiting the mapping accuracy and robustness. This paper proposes a novel monocular Semantic Object SLAM (SO-SLAM) system that addresses the introduction of object spatial constraints. We explore three representative spatial constraints, including scale proportional constraint, symmetrical texture constraint and plane supporting constraint. Based on these semantic constraints, we propose two new methods - a more robust object initialization method and an orientation fine optimization method. We have verified the performance of the algorithm on the public datasets and an author-recorded mobile robot dataset and achieved a significant improvement on mapping effects. We will release the code here: https://github.com/XunshanMan/SoSLAM.



قيم البحث

اقرأ أيضاً

We study a semantic SLAM problem faced by a robot tasked with autonomous weeding under the corn canopy. The goal is to detect corn stalks and localize them in a global coordinate frame. This is a challenging setup for existing algorithms because ther e is very little space between the camera and the plants, and the camera motion is primarily restricted to be along the row. To overcome these challenges, we present a multi-camera system where a side camera (facing the plants) is used for detection whereas front and back cameras are used for motion estimation. Next, we show how semantic features in the environment (corn stalks, ground, and crop planes) can be used to develop a robust semantic SLAM solution and present results from field trials performed throughout the growing season across various cornfields.
Simultaneous mapping and localization (SLAM) in an real indoor environment is still a challenging task. Traditional SLAM approaches rely heavily on low-level geometric constraints like corners or lines, which may lead to tracking failure in texturele ss surroundings or cluttered world with dynamic objects. In this paper, a compact semantic SLAM framework is proposed, with utilization of both geometric and object-level semantic constraints jointly, a more consistent mapping result, and more accurate pose estimation can be obtained. Two main contributions are presented int the paper, a) a robust and efficient SLAM data association and optimization framework is proposed, it models both discrete semantic labeling and continuous pose. b) a compact map representation, combining 2D Lidar map with object detection is presented. Experiments on public indoor datasets, TUM-RGBD, ICL-NUIM, and our own collected datasets prove the improving of SLAM robustness and accuracy compared to other popular SLAM systems, meanwhile a map maintenance efficiency can be achieved.
In this letter, we propose an integrated autonomous flight and semantic SLAM system that can perform long-range missions and real-time semantic mapping in highly cluttered, unstructured, and GPS-denied under-canopy environments. First, tree trunks an d ground planes are detected from LIDAR scans. We use a neural network and an instance extraction algorithm to enable semantic segmentation in real time onboard the UAV. Second, detected tree trunk instances are modeled as cylinders and associated across the whole LIDAR sequence. This semantic data association constraints both robot poses as well as trunk landmark models. The output of semantic SLAM is used in state estimation, planning, and control algorithms in real time. The global planner relies on a sparse map to plan the shortest path to the global goal, and the local trajectory planner uses a small but finely discretized robot-centric map to plan a dynamically feasible and collision-free trajectory to the local goal. Both the global path and local trajectory lead to drift-corrected goals, thus helping the UAV execute its mission accurately and safely.
103 - Akash Sharma , Wei Dong , 2020
We present a fast, scalable, and accurate Simultaneous Localization and Mapping (SLAM) system that represents indoor scenes as a graph of objects. Leveraging the observation that artificial environments are structured and occupied by recognizable obj ects, we show that a compositional scalable object mapping formulation is amenable to a robust SLAM solution for drift-free large scale indoor reconstruction. To achieve this, we propose a novel semantically assisted data association strategy that obtains unambiguous persistent object landmarks, and a 2.5D compositional rendering method that enables reliable frame-to-model RGB-D tracking. Consequently, we deliver an optimized online implementation that can run at near frame rate with a single graphics card, and provide a comprehensive evaluation against state of the art baselines. An open source implementation will be provided at https://placeholder.
We propose DSP-SLAM, an object-oriented SLAM system that builds a rich and accurate joint map of dense 3D models for foreground objects, and sparse landmark points to represent the background. DSP-SLAM takes as input the 3D point cloud reconstructed by a feature-based SLAM system and equips it with the ability to enhance its sparse map with dense reconstructions of detected objects. Objects are detected via semantic instance segmentation, and their shape and pose is estimated using category-specific deep shape embeddings as priors, via a novel second order optimization. Our object-aware bundle adjustment builds a pose-graph to jointly optimize camera poses, object locations and feature points. DSP-SLAM can operate at 10 frames per second on 3 different input modalities: monocular, stereo, or stereo+LiDAR. We demonstrate DSP-SLAM operating at almost frame rate on monocular-RGB sequences from the Friburg and Redwood-OS datasets, and on stereo+LiDAR sequences on the KITTI odometry dataset showing that it achieves high-quality full object reconstructions, even from partial observations, while maintaining a consistent global map. Our evaluation shows improvements in object pose and shape reconstruction with respect to recent deep prior-based reconstruction methods and reductions in camera tracking drift on the KITTI dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا