ﻻ يوجد ملخص باللغة العربية
This article describes an efficient end-to-end speech translation (E2E-ST) framework based on non-autoregressive (NAR) models. End-to-end speech translation models have several advantages over traditional cascade systems such as inference latency reduction. However, conventional AR decoding methods are not fast enough because each token is generated incrementally. NAR models, however, can accelerate the decoding speed by generating multiple tokens in parallel on the basis of the token-wise conditional independence assumption. We propose a unified NAR E2E-ST framework called Orthros, which has an NAR decoder and an auxiliary shallow AR decoder on top of the shared encoder. The auxiliary shallow AR decoder selects the best hypothesis by rescoring multiple candidates generated from the NAR decoder in parallel (parallel AR rescoring). We adopt conditional masked language model (CMLM) and a connectionist temporal classification (CTC)-based model as NAR decoders for Orthros, referred to as Orthros-CMLM and Orthros-CTC, respectively. We also propose two training methods to enhance the CMLM decoder. Experimental evaluations on three benchmark datasets with six language directions demonstrated that Orthros achieved large improvements in translation quality with a very small overhead compared with the baseline NAR model. Moreover, the Conformer encoder architecture enabled large quality improvements, especially for CTC-based models. Orthros-CTC with the Conformer encoder increased decoding speed by 3.63x on CPU with translation quality comparable to that of an AR model.
Non-autoregressive transformer models have achieved extremely fast inference speed and comparable performance with autoregressive sequence-to-sequence models in neural machine translation. Most of the non-autoregressive transformers decode the target
Fast inference speed is an important goal towards real-world deployment of speech translation (ST) systems. End-to-end (E2E) models based on the encoder-decoder architecture are more suitable for this goal than traditional cascaded systems, but their
Non-autoregressive (NAR) modeling has gained more and more attention in speech processing. With recent state-of-the-art attention-based automatic speech recognition (ASR) structure, NAR can realize promising real-time factor (RTF) improvement with on
The end-to-end (E2E) automatic speech recognition (ASR) offers several advantages over previous efforts for recognizing speech. However, in reverberant conditions, E2E ASR is a challenging task as the long-term sub-band envelopes of the reverberant s
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot