ترغب بنشر مسار تعليمي؟ اضغط هنا

EvilModel 2.0: Hiding Malware Inside of Neural Network Models

356   0   0.0 ( 0 )
 نشر من قبل Zhi Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While artificial intelligence (AI) is widely applied in various areas, it is also being used maliciously. It is necessary to study and predict AI-powered attacks to prevent them in advance. Turning neural network models into stegomalware is a malicious use of AI, which utilizes the features of neural network models to hide malware while maintaining the performance of the models. However, the existing methods have a low malware embedding rate and a high impact on the model performance, making it not practical. Therefore, by analyzing the composition of the neural network models, this paper proposes new methods to embed malware in models with high capacity and no service quality degradation. We used 19 malware samples and 10 mainstream models to build 550 malware-embedded models and analyzed the models performance on ImageNet dataset. A new evaluation method that combines the embedding rate, the model performance impact and the embedding effort is proposed to evaluate the existing methods. This paper also designs a trigger and proposes an application scenario in attack tasks combining EvilModel with WannaCry. This paper further studies the relationship between neural network models embedding capacity and the model structure, layer and size. With the widespread application of artificial intelligence, utilizing neural networks for attacks is becoming a forwarding trend. We hope this work can provide a reference scenario for the defense of neural network-assisted attacks.



قيم البحث

اقرأ أيضاً

Modern neural networks often contain significantly more parameters than the size of their training data. We show that this excess capacity provides an opportunity for embedding secret machine learning models within a trained neural network. Our novel framework hides the existence of a secret neural network with arbitrary desired functionality within a carrier network. We prove theoretically that the secret networks detection is computationally infeasible and demonstrate empirically that the carrier network does not compromise the secret networks disguise. Our paper introduces a previously unknown steganographic technique that can be exploited by adversaries if left unchecked.
Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCr y and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the papers model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.
Balancing the needs of data privacy and predictive utility is a central challenge for machine learning in healthcare. In particular, privacy concerns have led to a dearth of public datasets, complicated the construction of multi-hospital cohorts and limited the utilization of external machine learning resources. To remedy this, new methods are required to enable data owners, such as hospitals, to share their datasets publicly, while preserving both patient privacy and modeling utility. We propose NeuraCrypt, a private encoding scheme based on random deep neural networks. NeuraCrypt encodes raw patient data using a randomly constructed neural network known only to the data-owner, and publishes both the encoded data and associated labels publicly. From a theoretical perspective, we demonstrate that sampling from a sufficiently rich family of encoding functions offers a well-defined and meaningful notion of privacy against a computationally unbounded adversary with full knowledge of the underlying data-distribution. We propose to approximate this family of encoding functions through random deep neural networks. Empirically, we demonstrate the robustness of our encoding to a suite of adversarial attacks and show that NeuraCrypt achieves competitive accuracy to non-private baselines on a variety of x-ray tasks. Moreover, we demonstrate that multiple hospitals, using independent private encoders, can collaborate to train improved x-ray models. Finally, we release a challenge dataset to encourage the development of new attacks on NeuraCrypt.
Deep learning has been used in the research of malware analysis. Most classification methods use either static analysis features or dynamic analysis features for malware family classification, and rarely combine them as classification features and al so no extra effort is spent integrating the two types of features. In this paper, we combine static and dynamic analysis features with deep neural networks for Windows malware classification. We develop several methods to generate static and dynamic analysis features to classify malware in different ways. Given these features, we conduct experiments with composite neural network, showing that the proposed approach performs best with an accuracy of 83.17% on a total of 80 malware families with 4519 malware samples. Additionally, we show that using integrated features for malware family classification outperforms using static features or dynamic features alone. We show how static and dynamic features complement each other for malware classification.
Data hiding is referred to as the art of hiding secret data into a digital cover for covert communication. In this letter, we propose a novel method to disguise data hiding tools, including a data embedding tool and a data extraction tool, as a deep neural network (DNN) with an ordinary task. After training a DNN for both style transfer and data hiding, while the DNN can transfer the style of an image to a target one, it can be also used to hide secret data into a cover image or extract secret data from a stego image by inputting the trigger signal. In other words, the tools of data hiding are hidden to avoid arousing suspicion.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا