ﻻ يوجد ملخص باللغة العربية
Nonlinear devices, such as transistors, enable contemporary computing technologies. We theoretically investigate nonlinear effects, bearing a high fundamental scientific and technical relevance, in magnonics with emphasis on superconductor-ferromagnet hybrids. Accounting for finite magnon chemical potential, we theoretically demonstrate magnonic spin-Joule heating, the spin analogue of conventional electronic Joule heating. Besides suggesting a key contribution to magnonic heat transport in a broad range of devices, it provides insights into the thermal physics of non-conserved bosonic excitations. Considering a spin-split superconductor self-consistently, we demonstrate its interface with a ferromagnetic insulator to harbor large tunability of spin and thermal conductances. We further demonstrate hysteretic rectification I-V characteristics in this hybrid, where the hysteresis results from the superconducting state bistability.
The temperature distribution in nanowires due to Joule heating is studied analytically using a continuum model and a Greens function approach. We show that the temperatures reached in nanowires can be much lower than that predicted by bulk models of
We present a time-resolved study of the DC-current driven magnetization dynamics in a microstructured Cr/Heusler/Pt waveguide by means of Brillouin light scattering. A reduction of the effective spin-wave damping via the spin-transfer-torque effect l
In miniaturising electrical devices down to nanoscales, heat transfer has turned into a serious obstacle but also potential resource for future developments, both for conventional and quantum computing architectures. Controlling heat transport in sup
Topological Josephson junctions designed on the surface of a 3D-topological insulator (TI) harbor Majorana bound states (MBSs) among a continuum of conventional Andreev bound states. The distinct feature of these MBSs lies in the $4pi$-periodicity of
We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superco