ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat rectification via a superconducting artificial atom

186   0   0.0 ( 0 )
 نشر من قبل Jorden Senior Mr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In miniaturising electrical devices down to nanoscales, heat transfer has turned into a serious obstacle but also potential resource for future developments, both for conventional and quantum computing architectures. Controlling heat transport in superconducting circuits has thus received increasing attention in engineering microwave environments for circuit quantum electrodynamics (cQED) and circuit quantum thermodynamics experiments (cQTD). While theoretical proposals for cQTD devices are numerous, the experimental situation is much less advanced. There exist only relatively few experimental realisations, mostly due to the difficulties in developing the hybrid devices and in interfacing these often technologically contrasting components. Here we show a realisation of a quantum heat rectifier, a thermal equivalent to the electronic diode, utilising a superconducting transmon qubit coupled to two strongly unequal resonators terminated by mesoscopic heat baths. Our work is the experimental realisation of the spin-boson rectifier proposed by Segal and Nitzan.

قيم البحث

اقرأ أيضاً

Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two qubit interactions and gates having been demonstrated. These experime nts show that two nearby qubits can be readily coupled with local interactions. Performing gates between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a quantum bus, which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.
We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superco nducting island. Electronic heat current asymmetry in the structure arises from large mismatch between the thermal properties of these two. We demonstrate experimentally temperature differences exceeding $60$ mK between the forward and reverse thermal bias configurations. Our device offers a remarkably large heat rectification ratio up to $sim 140$ and allows its prompt implementation in true solid-state thermal nanocircuits and general-purpose electronic applications requiring energy harvesting or thermal management and isolation at the nanoscale.
We investigate electronic thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions. Ferromagnetic insulators coupled to superconductors are known to induce sizable spin splitting in the superconducting density of states , and also lead to efficient spin filtering if operated as tunnel barriers. The combination of spin splitting and spin filtering is shown to yield a substantial self-amplification of the electronic heat diode effect due to breaking of the electron-hole symmetry in the system which is added to the thermal asymmetry of the junction. Large spin splitting and large spin polarization can potentially lead to thermal rectification efficiency exceeding 5 .10^4 for realistic parameters in a suitable temperature range, thereby outperforming up to a factor of 250 the heat diode effect achievable with conventional superconducting tunnel junctions. These results could be relevant for improved mastering of the heat currents in innovative phase-coherent caloritronic nanodevices, and for enhanced thermal management of quantum circuits at the nanoscale.
We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device (gatemon) is controlled by an electrostatic gate that depletes carriers in a semiconducting wea k link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {mu}s) and dephasing times (1 {mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا