ﻻ يوجد ملخص باللغة العربية
With the vigorous development of multimedia equipment and applications, efficient retrieval of large-scale multi-modal data has become a trendy research topic. Thereinto, hashing has become a prevalent choice due to its retrieval efficiency and low storage cost. Although multi-modal hashing has drawn lots of attention in recent years, there still remain some problems. The first point is that existing methods are mainly designed in batch mode and not able to efficiently handle streaming multi-modal data. The second point is that all existing online multi-modal hashing methods fail to effectively handle unseen new classes which come continuously with streaming data chunks. In this paper, we propose a new model, termed Online enhAnced SemantIc haShing (OASIS). We design novel semantic-enhanced representation for data, which could help handle the new coming classes, and thereby construct the enhanced semantic objective function. An efficient and effective discrete online optimization algorithm is further proposed for OASIS. Extensive experiments show that our method can exceed the state-of-the-art models. For good reproducibility and benefiting the community, our code and data are already available in supplementary material and will be made publicly available.
With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of the
Due to the rapid development of mobile Internet techniques, cloud computation and popularity of online social networking and location-based services, massive amount of multimedia data with geographical information is generated and uploaded to the Int
Supervised cross-modal hashing has gained increasing research interest on large-scale retrieval task owning to its satisfactory performance and efficiency. However, it still has some challenging issues to be further studied: 1) most of them fail to w
Social network stores and disseminates a tremendous amount of user shared images. Deep hashing is an efficient indexing technique to support large-scale social image retrieval, due to its deep representation capability, fast retrieval speed and low s
Semantic hashing represents documents as compact binary vectors (hash codes) and allows both efficient and effective similarity search in large-scale information retrieval. The state of the art has primarily focused on learning hash codes that improv