ﻻ يوجد ملخص باللغة العربية
Electroencephalogram (EEG) has shown a useful approach to produce a brain-computer interface (BCI). One-dimensional (1-D) EEG signal is yet easily disturbed by certain artifacts (a.k.a. noise) due to the high temporal resolution. Thus, it is crucial to remove the noise in received EEG signal. Recently, deep learning-based EEG signal denoising approaches have achieved impressive performance compared with traditional ones. It is well known that the characteristics of self-similarity (including non-local and local ones) of data (e.g., natural images and time-domain signals) are widely leveraged for denoising. However, existing deep learning-based EEG signal denoising methods ignore either the non-local self-similarity (e.g., 1-D convolutional neural network) or local one (e.g., fully connected network and recurrent neural network). To address this issue, we propose a novel 1-D EEG signal denoising network with 2-D transformer, namely EEGDnet. Specifically, we comprehensively take into account the non-local and local self-similarity of EEG signal through the transformer module. By fusing non-local self-similarity in self-attention blocks and local self-similarity in feed forward blocks, the negative impact caused by noises and outliers can be reduced significantly. Extensive experiments show that, compared with other state-of-the-art models, EEGDnet achieves much better performance in terms of both quantitative and qualitative metrics.
This paper deals with the unification of local and non-local signal processing on graphs within a single convolutional neural network (CNN) framework. Building upon recent works on graph CNNs, we propose to use convolutional layers that take as input
This paper presents a new mathematical signal transform that is especially suitable for decoding information related to non-rigid signal displacements. We provide a measure theoretic framework to extend the existing Cumulative Distribution Transform
In the quest to realize a comprehensive EEG signal processing framework, in this paper, we demonstrate a toolbox and graphic user interface, EEGsig, for the full process of EEG signals. Our goal is to provide a comprehensive suite, free and open-sour
Inspired by group-based sparse coding, recently proposed group sparsity residual (GSR) scheme has demonstrated superior performance in image processing. However, one challenge in GSR is to estimate the residual by using a proper reference of the grou
Approximate message passing (AMP) is an efficient iterative signal recovery algorithm for compressed sensing (CS). For sensing matrices with independent and identically distributed (i.i.d.) Gaussian entries, the behavior of AMP can be asymptotically