ﻻ يوجد ملخص باللغة العربية
Robot localization remains a challenging task in GPS denied environments. State estimation approaches based on local sensors, e.g. cameras or IMUs, are drifting-prone for long-range missions as error accumulates. In this study, we aim to address this problem by localizing image observations in a 2D multi-modal geospatial map. We introduce the cross-scale dataset and a methodology to produce additional data from cross-modality sources. We propose a framework that learns cross-scale visual representations without supervision. Experiments are conducted on data from two different domains, underwater and aerial. In contrast to existing studies in cross-view image geo-localization, our approach a) performs better on smaller-scale multi-modal maps; b) is more computationally efficient for real-time applications; c) can serve directly in concert with state estimation pipelines.
Visual localization is one of the most important components for robotics and autonomous driving. Recently, inspiring results have been shown with CNN-based methods which provide a direct formulation to end-to-end regress 6-DoF absolute pose. Addition
Machines are a long way from robustly solving open-world perception-control tasks, such as first-person view (FPV) aerial navigation. While recent advances in end-to-end Machine Learning, especially Imitation and Reinforcement Learning appear promisi
In this work, we address the problem of cross-view geo-localization, which estimates the geospatial location of a street view image by matching it with a database of geo-tagged aerial images. The cross-view matching task is extremely challenging due
Low visual quality has prevented underwater robotic vision from a wide range of applications. Although several algorithms have been developed, real-time and adaptive methods are deficient for real-world tasks. In this paper, we address this difficult
Mapping and localization, preferably from a small number of observations, are fundamental tasks in robotics. We address these tasks by combining spatial structure (differentiable mapping) and end-to-end learning in a novel neural network architecture