ﻻ يوجد ملخص باللغة العربية
Low visual quality has prevented underwater robotic vision from a wide range of applications. Although several algorithms have been developed, real-time and adaptive methods are deficient for real-world tasks. In this paper, we address this difficulty based on generative adversarial networks (GAN), and propose a GAN-based restoration scheme (GAN-RS). In particular, we develop a multi-branch discriminator including an adversarial branch and a critic branch for the purpose of simultaneously preserving image content and removing underwater noise. In addition to adversarial learning, a novel dark channel prior loss also promotes the generator to produce realistic vision. More specifically, an underwater index is investigated to describe underwater properties, and a loss function based on the underwater index is designed to train the critic branch for underwater noise suppression. Through extensive comparisons on visual quality and feature restoration, we confirm the superiority of the proposed approach. Consequently, the GAN-RS can adaptively improve underwater visual quality in real time and induce an overall superior restoration performance. Finally, a real-world experiment is conducted on the seabed for grasping marine products, and the results are quite promising. The source code is publicly available at https://github.com/SeanChenxy/GAN_RS.
Robot localization remains a challenging task in GPS denied environments. State estimation approaches based on local sensors, e.g. cameras or IMUs, are drifting-prone for long-range missions as error accumulates. In this study, we aim to address this
This paper presents a new underwater dataset acquired from a visual-inertial-pressure acquisition system and meant to be used to benchmark visual odometry, visual SLAM and multi-sensors SLAM solutions. The dataset is publicly available and contains ground-truth trajectories for evaluation.
Realistic simulators are critical for training and verifying robotics systems. While most of the contemporary simulators are hand-crafted, a scaleable way to build simulators is to use machine learning to learn how the environment behaves in response
In real-world underwater environment, exploration of seabed resources, underwater archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most important one due to its high information content, non-intrusive, and passiv
In recent years, deep-learning-based visual object trackers have been studied thoroughly, but handling occlusions and/or rapid motion of the target remains challenging. In this work, we argue that conditioning on the natural language (NL) description