ﻻ يوجد ملخص باللغة العربية
In this paper, the problem of determining the number of signal sources impinging on an array of sensors and estimating their directions-of-arrival (DOAs) in the presence of spatially white nonuniform noise is considered. It is known that, in the case of nonuniform noise, the stochastic likelihood function cannot be concentrated with respect to the diagonal elements of noise covariance matrix. Therefore, the stochastic maximum-likelihood (SML) DOA estimation and source enumeration in the presence of nonuniform noise requires multidimensional search with very high computational complexity. Recently, two algorithms for estimating noise covariance matrix in the presence of nonuniform noise have been proposed in the literature. Using these new estimates of noise covariance matrix, an approach for obtaining the SML estimate of signal DOAs is proposed. In addition, new approaches are proposed for SML source enumeration with information criteria in the presence of nonuniform noise. The important feature of the proposed SML approaches for DOA estimation and source enumeration is that they have admissible computational complexity. In addition, some of them are robust against correlation between source signals. The performance of the proposed DOA estimation and source enumeration approaches are investigated using computer simulations.
We consider the problem of estimating the direction of arrival of a signal embedded in $K$-distributed noise, when secondary data which contains noise only are assumed to be available. Based upon a recent formula of the Fisher information matrix (FIM
The multipath radio channel is considered to have a non-bandlimited channel impulse response. Therefore, it is challenging to achieve high resolution time-delay (TD) estimation of multipath components (MPCs) from bandlimited observations of communica
Modifying the reward-biased maximum likelihood method originally proposed in the adaptive control literature, we propose novel learning algorithms to handle the explore-exploit trade-off in linear bandits problems as well as generalized linear bandit
We consider the problem of estimating parameters of stochastic differential equations (SDEs) with discrete-time observations that are either completely or partially observed. The transition density between two observations is generally unknown. We pr
Unlike the commonly used parametric regression models such as mixed models, that can easily violate the required statistical assumptions and result in invalid statistical inference, target maximum likelihood estimation allows more realistic data-gene