ﻻ يوجد ملخص باللغة العربية
We consider the problem of estimating the direction of arrival of a signal embedded in $K$-distributed noise, when secondary data which contains noise only are assumed to be available. Based upon a recent formula of the Fisher information matrix (FIM) for complex elliptically distributed data, we provide a simple expression of the FIM with the two data sets framework. In the specific case of $K$-distributed noise, we show that, under certain conditions, the FIM for the deterministic part of the model can be unbounded, while the FIM for the covariance part of the model is always bounded. In the general case of elliptical distributions, we provide a sufficient condition for unboundedness of the FIM. Accurate approximations of the FIM for $K$-distributed noise are also derived when it is bounded. Additionally, the maximum likelihood estimator of the signal DoA and an approximated version are derived, assuming known covariance matrix: the latter is then estimated from secondary data using a conventional regularization technique. When the FIM is unbounded, an analysis of the estimators reveals a rate of convergence much faster than the usual $T^{-1}$. Simulations illustrate the different behaviors of the estimators, depending on the FIM being bounded or not.
In this paper, the problem of determining the number of signal sources impinging on an array of sensors and estimating their directions-of-arrival (DOAs) in the presence of spatially white nonuniform noise is considered. It is known that, in the case
Over the past years, many applications aim to assess the causal effect of treatments assigned at the community level, while data are still collected at the individual level among individuals of the community. In many cases, one wants to evaluate the
Delsarte, Goethals, and Seidel (1977) used the linear programming method in order to find bounds for the size of spherical codes endowed with prescribed inner products between distinct points in the code. In this paper, we develop the linear programm
We develop a new estimation technique for recovering depth-of-field from multiple stereo images. Depth-of-field is estimated by determining the shift in image location resulting from different camera viewpoints. When this shift is not divisible by pi
We study the curvature-dimension inequality in regular graphs. We develop techniques for calculating the curvature of such graphs, and we give characterizations of classes of graphs with positive, zero, and negative curvature. Our main result is to c