ترغب بنشر مسار تعليمي؟ اضغط هنا

Table-based Fact Verification with Salience-aware Learning

268   0   0.0 ( 0 )
 نشر من قبل Fei Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tables provide valuable knowledge that can be used to verify textual statements. While a number of works have considered table-based fact verification, direct alignments of tabular data with tokens in textual statements are rarely available. Moreover, training a generalized fact verification model requires abundant labeled training data. In this paper, we propose a novel system to address these problems. Inspired by counterfactual causality, our system identifies token-level salience in the statement with probing-based salience estimation. Salience estimation allows enhanced learning of fact verification from two perspectives. From one perspective, our system conducts masked salient token prediction to enhance the model for alignment and reasoning between the table and the statement. From the other perspective, our system applies salience-aware data augmentation to generate a more diverse set of training instances by replacing non-salient terms. Experimental results on TabFact show the effective improvement by the proposed salience-aware learning techniques, leading to the new SOTA performance on the benchmark. Our code is publicly available at https://github.com/luka-group/Salience-aware-Learning .

قيم البحث

اقرأ أيضاً

The problem of verifying whether a textual hypothesis holds based on the given evidence, also known as fact verification, plays an important role in the study of natural language understanding and semantic representation. However, existing studies ar e mainly restricted to dealing with unstructured evidence (e.g., natural language sentences and documents, news, etc), while verification under structured evidence, such as tables, graphs, and databases, remains under-explored. This paper specifically aims to study the fact verification given semi-structured data as evidence. To this end, we construct a large-scale dataset called TabFact with 16k Wikipedia tables as the evidence for 118k human-annotated natural language statements, which are labeled as either ENTAILED or REFUTED. TabFact is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning. To address these reasoning challenges, we design two different models: Table-BERT and Latent Program Algorithm (LPA). Table-BERT leverages the state-of-the-art pre-trained language model to encode the linearized tables and statements into continuous vectors for verification. LPA parses statements into programs and executes them against the tables to obtain the returned binary value for verification. Both methods achieve similar accuracy but still lag far behind human performance. We also perform a comprehensive analysis to demonstrate great future opportunities. The data and code of the dataset are provided in url{https://github.com/wenhuchen/Table-Fact-Checking}.
Fact verification is a challenging task that requires simultaneously reasoning and aggregating over multiple retrieved pieces of evidence to evaluate the truthfulness of a claim. Existing approaches typically (i) explore the semantic interaction betw een the claim and evidence at different granularity levels but fail to capture their topical consistency during the reasoning process, which we believe is crucial for verification; (ii) aggregate multiple pieces of evidence equally without considering their implicit stances to the claim, thereby introducing spurious information. To alleviate the above issues, we propose a novel topic-aware evidence reasoning and stance-aware aggregation model for more accurate fact verification, with the following four key properties: 1) checking topical consistency between the claim and evidence; 2) maintaining topical coherence among multiple pieces of evidence; 3) ensuring semantic similarity between the global topic information and the semantic representation of evidence; 4) aggregating evidence based on their implicit stances to the claim. Extensive experiments conducted on the two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification. The source code can be obtained from https://github.com/jasenchn/TARSA.
295 - Qi Shi , Yu Zhang , Qingyu Yin 2021
Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that conta in rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.
The increasing concern with misinformation has stimulated research efforts on automatic fact checking. The recently-released FEVER dataset introduced a benchmark fact-verification task in which a system is asked to verify a claim using evidential sen tences from Wikipedia documents. In this paper, we present a connected system consisting of three homogeneous neural semantic matching models that conduct document retrieval, sentence selection, and claim verification jointly for fact extraction and verification. For evidence retrieval (document retrieval and sentence selection), unlike traditional vector space IR models in which queries and sources are matched in some pre-designed term vector space, we develop neural models to perform deep semantic matching from raw textual input, assuming no intermediate term representation and no access to structured external knowledge bases. We also show that Pageview frequency can also help improve the performance of evidence retrieval results, that later can be matched by using our neural semantic matching network. For claim verification, unlike previous approaches that simply feed upstream retrieved evidence and the claim to a natural language inference (NLI) model, we further enhance the NLI model by providing it with internal semantic relatedness scores (hence integrating it with the evidence retrieval modules) and ontological WordNet features. Experiments on the FEVER dataset indicate that (1) our neural semantic matching method outperforms popular TF-IDF and encoder models, by significant margins on all evidence retrieval metrics, (2) the additional relatedness score and WordNet features improve the NLI model via better semantic awareness, and (3) by formalizing all three subtasks as a similar semantic matching problem and improving on all three stages, the complete model is able to achieve the state-of-the-art results on the FEVER test set.
Despite significant interest in developing general purpose fact checking models, it is challenging to construct a large-scale fact verification dataset with realistic claims that would occur in the real world. Existing claims are either authored by c rowdworkers, thereby introducing subtle biases that are difficult to control for, or manually verified by professional fact checkers, causing them to be expensive and limited in scale. In this paper, we construct a challenging, realistic, and large-scale fact verification dataset called FaVIQ, using information-seeking questions posed by real users who do not know how to answer. The ambiguity in information-seeking questions enables automatically constructing true and false claims that reflect confusions arisen from users (e.g., the year of the movie being filmed vs. being released). Our claims are verified to be natural, contain little lexical bias, and require a complete understanding of the evidence for verification. Our experiments show that the state-of-the-art models are far from solving our new task. Moreover, training on our data helps in professional fact-checking, outperforming models trained on the most widely used dataset FEVER or in-domain data by up to 17% absolute. Altogether, our data will serve as a challenging benchmark for natural language understanding and support future progress in professional fact checking.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا