ﻻ يوجد ملخص باللغة العربية
The Lieb-Schultz-Mattis (LSM) theorem and its higher-dimensional generalizations by Oshikawa and Hastings establish that a translation-invariant lattice model of spin-$1/2$s can not have a non-degenerate ground state preserving both spin and translation symmetries. Recently it was shown that LSM theorems can be interpreted in terms of bulk-boundary correspondence of certain weak symmetry-protected topological (SPT) phases. In this work we discuss LSM-type theorems for two-dimensional fermionic systems, which have no bosonic analogs. They follow from a general classification of weak SPT phases of fermions in three dimensions. We further derive constraints on possible gapped symmetry-enriched topological phases in such systems. In particular, we show that lattice translations must permute anyons, thus leading to symmetry-enforced non-Abelian dislocations, or genons. We also discuss surface states of other weak SPT phases of fermions.
We propose and prove a family of generalized Lieb-Schultz-Mattis (LSM) theorems for symmetry protected topological (SPT) phases on boson/spin models in any dimensions. The conventional LSM theorem, applicable to e.g. any translation invariant system
The Lieb-Schultz-Mattis (LSM) theorem states that a spin system with translation and spin rotation symmetry and half-integer spin per unit cell does not admit a gapped symmetric ground state lacking fractionalized excitations. That is, the ground sta
We consider 2+1D lattice models of interacting bosons or spins, with both magnetic flux and fractional spin in the unit cell. We propose and prove a modified Lieb-Shultz Mattis (LSM) theorem in this setting, which applies even when the spin in the en
We develop a general operator algebraic method which focuses on projective representations of symmetry group for proving Lieb-Schultz-Mattis type theorems, i.e., no-go theorems that rule out the existence of a unique gapped ground state (or, more gen
The construction and classification of symmetry-protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Very recently, a complete classification and construction of space gr