ﻻ يوجد ملخص باللغة العربية
The superintegrability of several Hamiltonian systems defined on three-dimensional configuration spaces of constant curvature is studied. We first analyze the properties of the Killing vector fields, Noether symmetries and Noether momenta. Then we study the superintegrability of the Harmonic Oscillator, the Smorodinsky-Winternitz (S-W) system and the Harmonic Oscillator with ratio of frequencies 1:1:2 and additional nonlinear terms on the 3-dimensional sphere $S^3$ ($kp>0)$ and on the hyperbolic space $H^3$ ($kp<0$). In the second part we present a study first of the Kepler problem and then of the Kepler problem with additional nonlinear terms in these two curved spaces, $S^3$ ($kp>0)$ and $H^3$ ($kp<0$). We prove their superintegrability and we obtain, in all the cases, the maximal number of functionally independent integrals of motion. All the mathematical expressions are presented using the curvature $kp$ as a parameter, in such a way that particularizing for $kp>0$, $kp=0$, or $kp<0$, the corresponding properties are obtained for the system on the sphere $S^3$, the Euclidean space $IE^3$, or the hyperbolic space $H^3$, respectively.
We study four particular 3-dimensional natural Hamiltonian systems defined in conformally Euclidean spaces. We prove their superintegrability and we obtain, in the four cases, the maximal number of functionally independent integrals of motion. The tw
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint sp
We build a family of explicit one-forms on $S^3$ which are shown to form a complete set of eigenmodes for the Laplace-de Rahm operator.
We consider several problems that involve lines in three dimensions, and present improved algorithms for solving them. The problems include (i) ray shooting amid triangles in $R^3$, (ii) reporting intersections between query lines (segments, or rays)
Let $H$ be the quaternion algebra. Let $g$ be a complex Lie algebra and let $U(g)$ be the enveloping algebra of $g$. We define a Lie algebra structure on the tensor product space of $H$ and $U(g)$, and obtain the quaternification $g^H$ of $g$. Let $S