ﻻ يوجد ملخص باللغة العربية
We present new results on the strong parallel scaling for the OpenACC-accelerated implementation of the high-order spectral element fluid dynamics solver Nek5000. The test case considered consists of a direct numerical simulation of fully-developed turbulent flow in a straight pipe, at two different Reynolds numbers $Re_tau=360$ and $Re_tau=550$, based on friction velocity and pipe radius. The strong scaling is tested on several GPU-enabled HPC systems, including the Swiss Piz Daint system, TACCs Longhorn, Julichs JUWELS Booster, and Berzelius in Sweden. The performance results show that speed-up between 3-5 can be achieved using the GPU accelerated version compared with the CPU version on these different systems. The run-time for 20 timesteps reduces from 43.5 to 13.2 seconds with increasing the number of GPUs from 64 to 512 for $Re_tau=550$ case on JUWELS Booster system. This illustrates the GPU accelerated version the potential for high throughput. At the same time, the strong scaling limit is significantly larger for GPUs, at about $2000-5000$ elements per rank; compared to about $50-100$ for a CPU-rank.
This paper investigates the multi-GPU performance of a 3D buoyancy driven cavity solver using MPI and OpenACC directives on different platforms. The paper shows that decomposing the total problem in different dimensions affects the strong scaling per
This paper is focused on improving multi-GPU performance of a research CFD code on structured grids. MPI and OpenACC directives are used to scale the code up to 16 GPUs. This paper shows that using 16 P100 GPUs and 16 V100 GPUs can be 30$times$ and 7
Designing efficient and scalable sparse linear algebra kernels on modern multi-GPU based HPC systems is a daunting task due to significant irregular memory references and workload imbalance across the GPUs. This is particularly the case for Sparse Tr
Traditionally, on-demand, rigid, and malleable applications have been scheduled and executed on separate systems. The ever-growing workload demands and rapidly developing HPC infrastructure trigger the interest of converging these applications on a s
Mapping all the neurons in the brain requires automatic reconstruction of entire cells from volume electron microscopy data. The flood-filling network (FFN) architecture has demonstrated leading performance for segmenting structures from this data. H