ﻻ يوجد ملخص باللغة العربية
This paper investigates the multi-GPU performance of a 3D buoyancy driven cavity solver using MPI and OpenACC directives on different platforms. The paper shows that decomposing the total problem in different dimensions affects the strong scaling performance significantly for the GPU. Without proper performance optimizations, it is shown that 1D domain decomposition scales poorly on multiple GPUs due to the noncontiguous memory access. The performance using whatever decompositions can be benefited from a series of performance optimizations in the paper. Since the buoyancy driven cavity code is latency-bounded on the clusters examined, a series of optimizations both agnostic and tailored to the platforms are designed to reduce the latency cost and improve memory throughput between hosts and devices efficiently. First, the parallel message packing/unpacking strategy developed for noncontiguous data movement between hosts and devices improves the overall performance by about a factor of 2. Second, transferring different data based on the stencil sizes for different variables further reduces the communication overhead. These two optimizations are general enough to be beneficial to stencil computations having ghost changes on all of the clusters tested. Third, GPUDirect is used to improve the communication on clusters which have the hardware and software support for direct communication between GPUs without staging CPUs memory. Finally, overlapping the communication and computations is shown to be not efficient on multi-GPUs if only using MPI or MPI+OpenACC. Although we believe our implementation has revealed enough overlap, the actual running does not utilize the overlap well due to a lack of asynchronous progression.
This paper is focused on improving multi-GPU performance of a research CFD code on structured grids. MPI and OpenACC directives are used to scale the code up to 16 GPUs. This paper shows that using 16 P100 GPUs and 16 V100 GPUs can be 30$times$ and 7
Much of the current focus in high-performance computing is on multi-threading, multi-computing, and graphics processing unit (GPU) computing. However, vectorization and non-parallel optimization techniques, which can often be employed additionally, a
Performance and energy are the two most important objectives for optimisation on modern parallel platforms. Latest research demonstrated the importance of workload distribution as a decision variable in the bi-objective optimisation for performance a
Hardware-aware design and optimization is crucial in exploiting emerging architectures for PDE-based computational fluid dynamics applications. In this work, we study optimizations aimed at acceleration of OpenFOAM-based applications on emerging hybr
We present new results on the strong parallel scaling for the OpenACC-accelerated implementation of the high-order spectral element fluid dynamics solver Nek5000. The test case considered consists of a direct numerical simulation of fully-developed t