ترغب بنشر مسار تعليمي؟ اضغط هنا

NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task--Next Sentence Prediction

427   0   0.0 ( 0 )
 نشر من قبل Yi Sun
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using prompts to utilize language models to perform various downstream tasks, also known as prompt-based learning or prompt-learning, has lately gained significant success in comparison to the pre-train and fine-tune paradigm. Nonetheless, virtually all prompt-based methods are token-level, meaning they all utilize GPTs left-to-right language model or BERTs masked language model to perform cloze-style tasks. In this paper, we attempt to accomplish several NLP tasks in the zero-shot scenario using a BERT original pre-training task abandoned by RoBERTa and other models--Next Sentence Prediction (NSP). Unlike token-level techniques, our sentence-level prompt-based method NSP-BERT does not need to fix the length of the prompt or the position to be predicted, allowing it to handle tasks such as entity linking with ease. Based on the characteristics of NSP-BERT, we offer several quick building templates for various downstream tasks. We suggest a two-stage prompt method for word sense disambiguation tasks in particular. Our strategies for mapping the labels significantly enhance the models performance on sentence pair tasks. On the FewCLUE benchmark, our NSP-BERT outperforms other zero-shot methods on most of these tasks and comes close to the few-shot methods.

قيم البحث

اقرأ أيضاً

Transfer learning between different language pairs has shown its effectiveness for Neural Machine Translation (NMT) in low-resource scenario. However, existing transfer methods involving a common target language are far from success in the extreme sc enario of zero-shot translation, due to the language space mismatch problem between transferor (the parent model) and transferee (the child model) on the source side. To address this challenge, we propose an effective transfer learning approach based on cross-lingual pre-training. Our key idea is to make all source languages share the same feature space and thus enable a smooth transition for zero-shot translation. To this end, we introduce one monolingual pre-training method and two bilingual pre-training methods to obtain a universal encoder for different languages. Once the universal encoder is constructed, the parent model built on such encoder is trained with large-scale annotated data and then directly applied in zero-shot translation scenario. Experiments on two public datasets show that our approach significantly outperforms strong pivot-based baseline and various multilingual NMT approaches.
How meaning is represented in the brain is still one of the big open questions in neuroscience. Does a word (e.g., bird) always have the same representation, or does the task under which the word is processed alter its representation (answering can y ou eat it? versus can it fly?)? The brain activity of subjects who read the same word while performing different semantic tasks has been shown to differ across tasks. However, it is still not understood how the task itself contributes to this difference. In the current work, we study Magnetoencephalography (MEG) brain recordings of participants tasked with answering questions about concrete nouns. We investigate the effect of the task (i.e. the question being asked) on the processing of the concrete noun by predicting the millisecond-resolution MEG recordings as a function of both the semantics of the noun and the task. Using this approach, we test several hypotheses about the task-stimulus interactions by comparing the zero-shot predictions made by these hypotheses for novel tasks and nouns not seen during training. We find that incorporating the task semantics significantly improves the prediction of MEG recordings, across participants. The improvement occurs 475-550ms after the participants first see the word, which corresponds to what is considered to be the ending time of semantic processing for a word. These results suggest that only the end of semantic processing of a word is task-dependent, and pose a challenge for future research to formulate new hypotheses for earlier task effects as a function of the task and stimuli.
Multilingual pre-trained models have achieved remarkable transfer performance by pre-trained on rich kinds of languages. Most of the models such as mBERT are pre-trained on unlabeled corpora. The static and contextual embeddings from the models could not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better. We propose a pre-training task named Alignment Language Model (AlignLM), which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction. We evaluate our method on multilingual machine reading comprehension and natural language interface tasks. The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
The recent success of large pre-trained language models such as BERT and GPT-2 has suggested the effectiveness of incorporating language priors in downstream dialog generation tasks. However, the performance of pre-trained models on the dialog task i s not as optimal as expected. In this paper, we propose a Pre-trained Role Alternating Language model (PRAL), designed specifically for task-oriented conversational systems. We adopted (Wu et al., 2019) that models two speakers separately. We also design several techniques, such as start position randomization, knowledge distillation, and history discount to improve pre-training performance. We introduce a task-oriented dialog pretraining dataset by cleaning 13 existing data sets. We test PRAL on three different downstream tasks. The results show that PRAL performs better or on par with state-of-the-art methods.
Large pre-trained language models (LMs) have demonstrated remarkable ability as few-shot learners. However, their success hinges largely on scaling model parameters to a degree that makes it challenging to train and serve. In this paper, we propose a new approach, named as EFL, that can turn small LMs into better few-shot learners. The key idea of this approach is to reformulate potential NLP task into an entailment one, and then fine-tune the model with as little as 8 examples. We further demonstrate our proposed method can be: (i) naturally combined with an unsupervised contrastive learning-based data augmentation method; (ii) easily extended to multilingual few-shot learning. A systematic evaluation on 18 standard NLP tasks demonstrates that this approach improves the various existing SOTA few-shot learning methods by 12%, and yields competitive few-shot performance with 500 times larger models, such as GPT-3.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا