ﻻ يوجد ملخص باللغة العربية
Since Claude Shannon founded Information Theory, information theory has widely fostered other scientific fields, such as statistics, artificial intelligence, biology, behavioral science, neuroscience, economics, and finance. Unfortunately, actuarial science has hardly benefited from information theory. So far, only one actuarial paper on information theory can be searched by academic search engines. Undoubtedly, information and risk, both as Uncertainty, are constrained by entropy law. Todays insurance big data era means more data and more information. It is unacceptable for risk management and actuarial science to ignore information theory. Therefore, this paper aims to exploit information theory to discover the performance limits of insurance big data systems and seek guidance for risk modeling and the development of actuarial pricing systems.
We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES)
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a
When applying Value at Risk (VaR) procedures to specific positions or portfolios, we often focus on developing procedures only for the specific assets in the portfolio. However, since this small portfolio risk analysis ignores information from assets
It has been for a long time to use big data of autonomous vehicles for perception, prediction, planning, and control of driving. Naturally, it is increasingly questioned why not using this big data for risk management and actuarial modeling. This art
We present a general framework for portfolio risk management in discrete time, based on a replicating martingale. This martingale is learned from a finite sample in a supervised setting. The model learns the features necessary for an effective low-di