ترغب بنشر مسار تعليمي؟ اضغط هنا

Mask is All You Need: Rethinking Mask R-CNN for Dense and Arbitrary-Shaped Scene Text Detection

118   0   0.0 ( 0 )
 نشر من قبل Xugong Qin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. The first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the deconv-conv decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.



قيم البحث

اقرأ أيضاً

Arbitrary-shaped text detection is a challenging task since curved texts in the wild are of the complex geometric layouts. Existing mainstream methods follow the instance segmentation pipeline to obtain the text regions. However, arbitraryshaped text s are difficult to be depicted through one single segmentation network because of the varying scales. In this paper, we propose a two-stage segmentation-based detector, termed as NASK (Need A Second looK), for arbitrary-shaped text detection. Compared to the traditional single-stage segmentation network, our NASK conducts the detection in a coarse-to-fine manner with the first stage segmentation spotting the rectangle text proposals and the second one retrieving compact representations. Specifically, NASK is composed of a Text Instance Segmentation (TIS) network (1st stage), a Geometry-aware Text RoI Alignment (GeoAlign) module, and a Fiducial pOint eXpression (FOX) module (2nd stage). Firstly, TIS extracts the augmented features with a novel Group Spatial and Channel Attention (GSCA) module and conducts instance segmentation to obtain rectangle proposals. Then, GeoAlign converts these rectangles into the fixed size and encodes RoI-wise feature representation. Finally, FOX disintegrates the text instance into serval pivotal geometrical attributes to refine the detection results. Extensive experimental results on three public benchmarks including Total-Text, SCUTCTW1500, and ICDAR 2015 verify that our NASK outperforms recent state-of-the-art methods.
78 - Hao Wang , Pu Lu , Hui Zhang 2019
Recently, end-to-end text spotting that aims to detect and recognize text from cluttered images simultaneously has received particularly growing interest in computer vision. Different from the existing approaches that formulate text detection as boun ding box extraction or instance segmentation, we localize a set of points on the boundary of each text instance. With the representation of such boundary points, we establish a simple yet effective scheme for end-to-end text spotting, which can read the text of arbitrary shapes. Experiments on three challenging datasets, including ICDAR2015, TotalText and COCO-Text demonstrate that the proposed method consistently surpasses the state-of-the-art in both scene text detection and end-to-end text recognition tasks.
142 - Meng Cao , Yuexian Zou 2020
Deep learning-based scene text detection methods have progressed substantially over the past years. However, there remain several problems to be solved. Generally, long curve text instances tend to be fragmented because of the limited receptive field size of CNN. Besides, simple representations using rectangle or quadrangle bounding boxes fall short when dealing with more challenging arbitrary-shaped texts. In addition, the scale of text instances varies greatly which leads to the difficulty of accurate prediction through a single segmentation network. To address these problems, we innovatively propose a two-stage segmentation based arbitrary text detector named textit{NASK} (textbf{N}eed textbf{A} textbf{S}econd lootextbf{K}). Specifically, textit{NASK} consists of a Text Instance Segmentation network namely textit{TIS} ((1^{st}) stage), a Text RoI Pooling module and a Fiducial pOint eXpression module termed as textit{FOX} ((2^{nd}) stage). Firstly, textit{TIS} conducts instance segmentation to obtain rectangle text proposals with a proposed Group Spatial and Channel Attention module (textit{GSCA}) to augment the feature expression. Then, Text RoI Pooling transforms these rectangles to the fixed size. Finally, textit{FOX} is introduced to reconstruct text instances with a more tighter representation using the predicted geometrical attributes including text center line, text line orientation, character scale and character orientation. Experimental results on two public benchmarks including textit{Total-Text} and textit{SCUT-CTW1500} have demonstrated that the proposed textit{NASK} achieves state-of-the-art results.
Letting a deep network be aware of the quality of its own predictions is an interesting yet important problem. In the task of instance segmentation, the confidence of instance classification is used as mask quality score in most instance segmentation frameworks. However, the mask quality, quantified as the IoU between the instance mask and its ground truth, is usually not well correlated with classification score. In this paper, we study this problem and propose Mask Scoring R-CNN which contains a network block to learn the quality of the predicted instance masks. The proposed network block takes the instance feature and the corresponding predicted mask together to regress the mask IoU. The mask scoring strategy calibrates the misalignment between mask quality and mask score, and improves instance segmentation performance by prioritizing more accurate mask predictions during COCO AP evaluation. By extensive evaluations on the COCO dataset, Mask Scoring R-CNN brings consistent and noticeable gain with different models, and outperforms the state-of-the-art Mask R-CNN. We hope our simple and effective approach will provide a new direction for improving instance segmentation. The source code of our method is available at url{https://github.com/zjhuang22/maskscoring_rcnn}.
Tremendous efforts have been made to improve mask localization accuracy in instance segmentation. Modern instance segmentation methods relying on fully convolutional networks perform pixel-wise classification, which ignores object boundaries and shap es, leading coarse and indistinct mask prediction results and imprecise localization. To remedy these problems, we propose a conceptually simple yet effective Boundary-preserving Mask R-CNN (BMask R-CNN) to leverage object boundary information to improve mask localization accuracy. BMask R-CNN contains a boundary-preserving mask head in which object boundary and mask are mutually learned via feature fusion blocks. As a result, the predicted masks are better aligned with object boundaries. Without bells and whistles, BMask R-CNN outperforms Mask R-CNN by a considerable margin on the COCO dataset; in the Cityscapes dataset, there are more accurate boundary groundtruths available, so that BMask R-CNN obtains remarkable improvements over Mask R-CNN. Besides, it is not surprising to observe that BMask R-CNN obtains more obvious improvement when the evaluation criterion requires better localization (e.g., AP$_{75}$) as shown in Fig.1. Code and models are available at url{https://github.com/hustvl/BMaskR-CNN}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا