ﻻ يوجد ملخص باللغة العربية
Tremendous efforts have been made to improve mask localization accuracy in instance segmentation. Modern instance segmentation methods relying on fully convolutional networks perform pixel-wise classification, which ignores object boundaries and shapes, leading coarse and indistinct mask prediction results and imprecise localization. To remedy these problems, we propose a conceptually simple yet effective Boundary-preserving Mask R-CNN (BMask R-CNN) to leverage object boundary information to improve mask localization accuracy. BMask R-CNN contains a boundary-preserving mask head in which object boundary and mask are mutually learned via feature fusion blocks. As a result, the predicted masks are better aligned with object boundaries. Without bells and whistles, BMask R-CNN outperforms Mask R-CNN by a considerable margin on the COCO dataset; in the Cityscapes dataset, there are more accurate boundary groundtruths available, so that BMask R-CNN obtains remarkable improvements over Mask R-CNN. Besides, it is not surprising to observe that BMask R-CNN obtains more obvious improvement when the evaluation criterion requires better localization (e.g., AP$_{75}$) as shown in Fig.1. Code and models are available at url{https://github.com/hustvl/BMaskR-CNN}.
Letting a deep network be aware of the quality of its own predictions is an interesting yet important problem. In the task of instance segmentation, the confidence of instance classification is used as mask quality score in most instance segmentation
Resonant Beam Charging (RBC) is a wireless charging technology which supports multi-watt power transfer over meter-level distance. The features of safety, mobility and simultaneous charging capability enable RBC to charge multiple mobile devices safe
Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. T
Rapid advances in 2D perception have led to systems that accurately detect objects in real-world images. However, these systems make predictions in 2D, ignoring the 3D structure of the world. Concurrently, advances in 3D shape prediction have mostly
We present a novel unsupervised feature representation learning method, Visual Commonsense Region-based Convolutional Neural Network (VC R-CNN), to serve as an improved visual region encoder for high-level tasks such as captioning and VQA. Given a se