ﻻ يوجد ملخص باللغة العربية
We explore the Baryonic Tully-Fisher Relation in the Local Group. Rotationally supported Local Group galaxies adhere precisely to the relation defined by more distant galaxies. For pressure supported dwarf galaxies, we determine the scaling factor $beta_c$ that relates their observed velocity dispersion to the equivalent circular velocity of rotationally supported galaxies of the same mass such that $V_o = beta_c sigma_*$. For a typical mass-to-light ratio $Upsilon_* = 2;mathrm{M}_{odot}/mathrm{L}_{odot}$ in the $V$-band, we find that $beta_c = 2$. More generally, $log beta_c = 0.25 log Upsilon_* +0.226$. This provides a common kinematic scale relating pressure and rotationally supported dwarf galaxies.
We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC20
In a LCDM cosmology, the baryonic Tully-Fisher relation (BTFR) is expected to show significant intrinsic scatter resulting from the mass-concentration relation of dark matter halos and the baryonic-to-halo mass ratio. We study the BTFR using a sample
We estimate the stellar masses of disk galaxies with two independent methods: a photometrically self-consistent color$-$mass-to-light ratio relation (CMLR) from population synthesis models, and the Baryonic Tully-Fisher relation (BTFR) calibrated by
We present a novel 2D flux density model for observed HI emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes HI
We study the baryonic Tully-Fisher relation (BTFR) at z=0 using 153 galaxies from the SPARC sample. We consider different definitions of the characteristic velocity from HI and H-alpha rotation curves, as well as HI line-widths from single-dish obser