ﻻ يوجد ملخص باللغة العربية
We estimate the stellar masses of disk galaxies with two independent methods: a photometrically self-consistent color$-$mass-to-light ratio relation (CMLR) from population synthesis models, and the Baryonic Tully-Fisher relation (BTFR) calibrated by gas rich galaxies. These two methods give consistent results. The CMLR correctly converts distinct Tully-Fisher relations in different bands into the same BTFR. The BTFR is consistent with $M_b propto V_f^4$ over nearly six decades in mass, with no hint of a change in slope over that range. The intrinsic scatter in the BTFR is negligible, implying that the IMF of disk galaxies is effectively universal. The gas rich BTFR suggests an absolute calibration of the stellar mass scale that yields nearly constant mass-to-light ratios in the near-infrared (NIR): $0.57;M_{odot}/L_{odot}$ in $K_s$ and $0.45;M_{odot}/L_{odot}$ at $3.6mu$. There is only modest intrinsic scatter ($sim 0.12$ dex) about these typical values. There is no discernible variation with color or other properties: the NIR luminosity is a good tracer of stellar mass.
We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC20
In a LCDM cosmology, the baryonic Tully-Fisher relation (BTFR) is expected to show significant intrinsic scatter resulting from the mass-concentration relation of dark matter halos and the baryonic-to-halo mass ratio. We study the BTFR using a sample
We present a novel 2D flux density model for observed HI emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes HI
We study the baryonic Tully-Fisher relation (BTFR) at z=0 using 153 galaxies from the SPARC sample. We consider different definitions of the characteristic velocity from HI and H-alpha rotation curves, as well as HI line-widths from single-dish obser
We explore the use of the baryonic Tully-Fisher relation (bTFR) as a new distance indicator. Advances in near-IR imaging and stellar population models, plus precise rotation curves, have reduced the scatter in the bTFR such that distance is the domin