ﻻ يوجد ملخص باللغة العربية
We study contests where the designers objective is an extension of the widely studied objective of maximizing the total output: The designer gets zero marginal utility from a players output if the output of the player is very low or very high. We model this using two objective functions: binary threshold, where a players contribution to the designers utility is 1 if her output is above a certain threshold, and 0 otherwise; and linear threshold, where a players contribution is linear if her output is between a lower and an upper threshold, and becomes constant below the lower and above the upper threshold. For both of these objectives, we study (1) rank-order allocation contests that use only the ranking of the players to assign prizes and (2) general contests that may use the numerical values of the players outputs to assign prizes. We characterize the optimal contests that maximize the designers objective and indicate techniques to efficiently compute them. We also prove that for the linear threshold objective, a contest that distributes the prize equally among a fixed number of top-ranked players offers a factor-2 approximation to the optimal rank-order allocation contest.
We study the problem of repeatedly auctioning off an item to one of $k$ bidders where: a) bidders have a per-round individual rationality constraint, b) bidders may leave the mechanism at any point, and c) the bidders valuations are adversarially cho
We define the notion of Bayes correlated Wardrop equilibrium for general nonatomic games with anonymous players and incomplete information. Bayes correlated Wardrop equilibria describe the set of equilibrium outcomes when a mediator, such as a traffi
Mechanism design has traditionally assumed that the set of participants are fixed and known to the mechanism (the market owner) in advance. However, in practice, the market owner can only directly reach a small number of participants (her neighbours)
We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both random
Second-price auctions with deposits are frequently used in blockchain environments. An auction takes place on-chain: bidders deposit an amount that fully covers their bid (but possibly exceeds it) in a smart contract. The deposit is used as insurance