ﻻ يوجد ملخص باللغة العربية
We present a modified commercial L-4C geophone with interferometric readout that demonstrated a resolution 60 times lower than the included coil-magnet readout at low frequencies. The intended application for the modified sensor is in vibration isolation platforms that require improved performance at frequencies lower than 1 Hz. A controls and noise-model of an Advanced LIGO HAM-ISI vibration isolation system was developed, and it shows that our sensor can reduce the residual vibration by a factor of 70 at 0.1 Hz
Ground vibrations couple to the longitudinal and angular motion of the aLIGO test masses and limit the observatory sensitivity below 30,Hz. Novel inertial sensors have the potential to improve the aLIGO sensitivity in this band and simplify the lock
In this paper the sensor noise of two geophone configurations (L-22D and L-4C geophones from Sercel with custom built amplifiers) was measured by performing two huddle tests. It is shown that the accuracy of the results can be significantly improved
Recently CMOS (complementary metal-oxide semiconductor) sensors have progressed to a point where they may offer improved performance in imaging x-ray detection compared to the CCDs often used in x-ray satellites. We demonstrate x-ray detection in the
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choi
Absorption spectroscopy is widely used in sensing and astronomy to understand molecular compositions on microscopic to cosmological scales. However, typical dispersive spectroscopic techniques require multichannel detection, fundamentally limiting th