ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry effects on dust attenuation curves with different grain sources at high redshift

79   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Hirashita
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dust has been detected in high-redshift ($z>5$) galaxies but its origin is still being debated. Dust production in high-redshift galaxies could be dominated by stellar production or by accretion (dust growth) in the interstellar medium. Previous studies have shown that these two dust sources predict different grain size distributions, which lead to significantly different extinction curves. In this paper, we investigate how the difference in the extinction curves affects the dust attenuation properties of galaxies by performing radiative transfer calculations. To examine the major effects of the dust--stars distribution geometry, we adopt two representative cases in spherical symmetry: the well-mixed geometry (stars and dust are homogeneously mixed) and the two-layer geometry (young stars are more concentrated in the centre). In both cases, we confirm that the attenuation curve can be drastically steepened by scattering and by different optical depths between young and old stellar populations, and can be flattened by the existence of unobscured stellar populations. We can reproduce similar attenuation curves even with very different extinction curves. Thus, we conclude that it is difficult to distinguish the dust sources only with attenuation curves. However, if we include information on dust emission and plot the IRX (infrared excess)--$beta$ (ultraviolet spectral slope) relation, different dust sources predict different positions in the IRX--$beta$ diagram. A larger $beta$ is preferred under a similar IRX if dust growth is the dominant dust source.



قيم البحث

اقرأ أيضاً

A diverse range of dust attenuation laws is found in star-forming galaxies. In particular, Tress et al. (2018) studied the SHARDS survey to constrain the NUV bump strength (B) and the total-to selective ratio (Rv) of 1,753 star-forming galaxies in th e GOODS-N field at 1.5<z<3. We revisit here this sample to assess the implications and possible causes of the correlation found between Rv and B. The UVJ bicolour plot and main sequence of star formation are scrutinised to look for clues into the observed trend. The standard boundary between quiescent and star-forming galaxies is preserved when taking into account the wide range of attenuation parameters. However, an additional degeneracy, regarding the effective attenuation law, is added to the standard loci of star-forming galaxies in the UVJ diagram. A simple phenomenological model with an age-dependent extinction (at fixed dust composition) is compatible with the observed trend between Rv and B, whereby the opacity decreases with the age of the populations, resulting in a weaker NUV bump when the overall attenuation is shallower (greyer). In addition, we compare the constraints obtained by the SHARDS sample with dust models from the literature, supporting a scenario where geometry could potentially drive the correlation between Rv and B
We present predictions for high redshift ($z=2-10$) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the ${rm H}_{alpha}$ and ${rm H}_{beta}$ + $[rm O ,III]$ luminosity functions up to $z=8$. The predicted ${rm H}_{beta}$ + $[rm O ,III]$ luminosity functions are consistent with present observations at $zlesssim 3$ with $lesssim 0.1,{rm dex}$ differences in luminosities. However, the predicted ${rm H}_{alpha}$ luminosity function is $sim 0.3,{rm dex}$ dimmer than the observed one at $zsimeq 2$. Furthermore, we explore continuum spectral indices, the Balmer break at $4000$AA (D4000) and the UV continuum slope $beta$. The median D4000 versus sSFR relation predicted at $z=2$ is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed $A_{rm UV}$ versus $beta$ relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at $z=2-6$ and investigate their dependence on galaxy colors and stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colors, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high redshift galaxies. Future JWST observations will further test these predictions.
SPICA is one of the key projects for the future. Not only its instrument suite will open up a discovery window but they will also allow to physically understand some of the phenomena that we still do not understand in the high-redshift universe. Usin g new homogeneous luminosity functions (LFs) in the Far-Ultraviolet (FUV) from VVDS and in the Far-Infrared (FIR) from Herschel/PEP and Herschel/HerMES, we studied the evolution of the dust attenuation with redshift. With this information, we are able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density (SFRD_TOT). Our main conclusions are that: 1) the dust attenuation A_FUV is found to increase from z = 0 to $z sim 1.2 and then starts to decrease until our last data point at z = 3.6; 2) the estimated SFRD confirms published results to z sim 2. At z > 2, we observe either a plateau or a small increase up to z sim 3 and then a likely decrease up to z = 3.6; 3) the peak of A_FUV is delayed with respect to the plateau of SFRD_TOT but the origin of this delay is not understood yet, and SPICA instruments will provide clues to move further in the physical understanding of this delay but also on the detection and redshift measurements of galaxies at higher redshifts. This work is further detailed in Burgarella et al. (2013).
The discoveries of huge amounts of dust and unusual extinction curves in high-redshift quasars (z > 4) cast challenging issues on the origin and properties of dust in the early universe. In this Letter, we investigate the evolutions of dust content a nd extinction curve in a high-z quasar, based on the dust evolution model taking account of grain size distribution. First, we show that the Milky-Way extinction curve is reproduced by introducing a moderate fraction (~0.2) of dense molecular-cloud phases in the interstellar medium for a graphite-silicate dust model. Then we show that the peculier extinction curves in high-z quasars can be explained by taking a much higher molecular-cloud fraction (>0.5), which leads to more efficient grain growth and coagulation, and by assuming amorphous carbon instead of graphite. The large dust content in high-z quasar hosts is also found to be a natural consequence of the enhanced dust growth. These results indicate that grain growth and coagulation in molecular clouds are key processes that can increase the dust mass and change the size distribution of dust in galaxies, and that, along with a different dust composition, can contribute to shape the extinction curve.
We use a sample of 532 star-forming galaxies at redshifts $zsim 1.4-2.6$ with deep rest-frame optical spectra from the MOSFIRE Deep Evolution Field (MOSDEF) survey to place the first constraints on the nebular attenuation curve at high redshift. Base d on the first five low-order Balmer emission lines detected in the composite spectra of these galaxies (${rm Halpha}$ through ${rm Hepsilon}$), we derive a nebular attenuation curve that is similar in shape to that of the Galactic extinction curve, suggesting that the dust covering fraction and absorption/scattering properties along the lines-of-sight to massive stars at high redshift are similar to those of the average Milky Way sightline. The curve derived here implies nebular reddening values that are on average systematically larger than those derived for the stellar continuum. In the context of stellar population synthesis models that include the effects of stellar multiplicity, the difference in reddening of the nebular lines and stellar continuum may imply molecular cloud crossing timescales that are a factor of $gtrsim 3times$ longer than those inferred for local molecular clouds, star-formation rates that are constant or increasing with time such that newly-formed and dustier OB associations always dominate the ionizing flux, and/or that the dust responsible for reddening the nebular emission may be associated with non-molecular (i.e., ionized and neutral) phases of the ISM. Our analysis points to a variety of investigations of the nebular attenuation curve that will be enabled with the next generation of ground- and space-based facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا