ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel observations: contraints on dust attenuation and star formation histories at high redshift

64   0   0.0 ( 0 )
 نشر من قبل Denis Burgarella
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SPICA is one of the key projects for the future. Not only its instrument suite will open up a discovery window but they will also allow to physically understand some of the phenomena that we still do not understand in the high-redshift universe. Using new homogeneous luminosity functions (LFs) in the Far-Ultraviolet (FUV) from VVDS and in the Far-Infrared (FIR) from Herschel/PEP and Herschel/HerMES, we studied the evolution of the dust attenuation with redshift. With this information, we are able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density (SFRD_TOT). Our main conclusions are that: 1) the dust attenuation A_FUV is found to increase from z = 0 to $z sim 1.2 and then starts to decrease until our last data point at z = 3.6; 2) the estimated SFRD confirms published results to z sim 2. At z > 2, we observe either a plateau or a small increase up to z sim 3 and then a likely decrease up to z = 3.6; 3) the peak of A_FUV is delayed with respect to the plateau of SFRD_TOT but the origin of this delay is not understood yet, and SPICA instruments will provide clues to move further in the physical understanding of this delay but also on the detection and redshift measurements of galaxies at higher redshifts. This work is further detailed in Burgarella et al. (2013).

قيم البحث

اقرأ أيضاً

133 - N. Reddy , M. Dickinson , D. Elbaz 2011
We take advantage of the sensitivity and resolution of Herschel at 100 and 160 micron to directly image the thermal dust emission and investigate the infrared luminosities, L(IR), and dust obscuration of typical star-forming (L*) galaxies at high red shift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5<z<2.6 in the GOODS-North field. Supplemented with deep Very Large Array (VLA) and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 micron, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L(UV)>1e10 Lsun at z~2 are luminous infrared galaxies (LIRGs) with a median L(IR)=(2.2+/-0.3)e11 Lsun. Typical galaxies at 1.5<z<2.6 have a median dust obscuration L(IR)/L(UV) = 7.1+/-1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2+/-0.6. This result is similar to that inferred from previous investigations of the UV, H-alpha, 24 micron, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope implies that L* galaxies with redder spectral slopes are also dustier, and that the correlation between UV slope and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame 30 and 50 micron fluxes validate on average the use of the local UV attenuation curve to recover the dust attenuation of typical star-forming galaxies at high redshift. In the simplest interpretation, the agreement between the local and high redshift UV attenuation curves suggests a similarity in the dust production and stellar and dust geometries of starburst galaxies over the last 10 billion years.
We investigate the properties (e.g. star formation rate, dust attentuation, stellar mass and metallicity) of a sample of infrared luminous galaxies at z sim 1 via near-IR spectroscopy with Subaru-FMOS. Our sample consists of Herschel SPIRE and Spitze r MIPS selected sources in the COSMOS field with photometric redshifts in the range 0.7 < z-phot < 1.8, which have been targeted in 2 pointings (0.5 sq. deg.) with FMOS. We find a modest success rate for emission line detections, with candidate H{alpha} emission lines detected for 57 of 168 SPIRE sources (34 per cent). By stacking the near-IR spectra we directly measure the mean Balmer decrement for the H{alpha} and H{beta} lines, finding a value of <E(B-V)> = 0.51pm0.27 for <LIR> = 10^12 Lsol sources at <z> = 1.36. By comparing star formation rates estimated from the IR and from the dust uncorrected H{alpha} line we find a strong relationship between dust attenuation and star formation rate. This relation is broadly consistent with that previously seen in star-forming galaxies at z ~ 0.1. Finally, we investigate the metallicity via the N2 ratio, finding that z ~ 1 IR-selected sources are indistinguishable from the local mass-metallicity relation. We also find a strong correlation between dust attentuation and metallicity, with the most metal-rich IR-sources experiencing the largest levels of dust attenuation.
We present a new analysis of the dust obscuration in starburst galaxies at low and high redshift. This study is motivated by our unique sample of the most extreme UV-selected starburst galaxies in the nearby universe (z<0.3), found to be good analogs of high-redshift Lyman Break Galaxies (LBGs) in most of their physical properties. We find that the dust properties of the Lyman Break Analogs (LBAs) are consistent with the relation derived previously by Meurer et al. (M99) that is commonly used to dust-correct star formation rate measurements at a very wide range of redshifts. We directly compare our results with high redshift samples (LBGs, BzK, and sub-mm galaxies at z=2-3) having IR data either from Spitzer or Herschel. The attenuation in typical LBGs at z=2-3 and LBAs is very similar. Because LBAs are much better analogs to LBGs compared to previous local star-forming samples, including M99, the practice of dust-correcting the SFRs of high redshift galaxies based on the local calibration is now placed on a much more solid ground. We illustrate the importance of this result by showing how the locally calibrated relation between UV measurements and extinction is used to estimate the integrated, dust-corrected star formation rate density at z=2-6.
A diverse range of dust attenuation laws is found in star-forming galaxies. In particular, Tress et al. (2018) studied the SHARDS survey to constrain the NUV bump strength (B) and the total-to selective ratio (Rv) of 1,753 star-forming galaxies in th e GOODS-N field at 1.5<z<3. We revisit here this sample to assess the implications and possible causes of the correlation found between Rv and B. The UVJ bicolour plot and main sequence of star formation are scrutinised to look for clues into the observed trend. The standard boundary between quiescent and star-forming galaxies is preserved when taking into account the wide range of attenuation parameters. However, an additional degeneracy, regarding the effective attenuation law, is added to the standard loci of star-forming galaxies in the UVJ diagram. A simple phenomenological model with an age-dependent extinction (at fixed dust composition) is compatible with the observed trend between Rv and B, whereby the opacity decreases with the age of the populations, resulting in a weaker NUV bump when the overall attenuation is shallower (greyer). In addition, we compare the constraints obtained by the SHARDS sample with dust models from the literature, supporting a scenario where geometry could potentially drive the correlation between Rv and B
Using new homogeneous LFs in the FUV and in the FIR Herschel/PEP and Herschel/HerMES, we study the evolution of the dust attenuation with redshift. With this information in hand, we are able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density SFRD_TOT. By integrating SFRD_TOT, we follow the mass building and analyze the redshift evolution of the stellar mass density (SMD). This letter aims at providing a complete view of star formation from the local universe to z = 4 and, using assumptions on earlier star formation history, compares this evolution to what was known before in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. The main conclusions of this letter are: 1) the dust attenuation A_FUV is found to increase from z = 0 to z sim 1.2 and then starts to decrease up to our last data point at z = 3.6; 2) the estimated SFRD confirms published results up to z = 2. At z > 2, we observe either a plateau or a small increase up to z = 3 and then a likely decrease up to z = 3.6; 3) the peak of A_FUV is delayed with respect to the plateau of SFRD_TOT and a likely origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (namely exponential rise and linear rise with time) for the evolution of the star formation density from z = 3.6 to z_form = 10, we integrate SFRD_TOT and find a good agreement with the published SMDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا