ترغب بنشر مسار تعليمي؟ اضغط هنا

Two contact binaries with mass ratios close to the minimum mass ratio

109   0   0.0 ( 0 )
 نشر من قبل Kai Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cut-off mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 ($qsim0.055$ for J082700, and $qsim0.089$ for J132829). J082700 is a shallow contact binary with a contact degree of $sim$19%, and J132829 is a deep contact system with a fillout factor of $sim$70%. The $O-C$ diagram analysis indicated that both the two systems manifest long-term period decrease. In addition, J082700 exhibits a cyclic modulation which is more likely resulted from Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of $qlesssim0.1$ and discovered that the values of $J_{spin}/J_{orb}$ of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One is that some physical processes, unknown to date, are not considered when Hut presented the dynamically instability criterion. The other is that the dimensionless gyration radius ($k$) should be smaller than the value we used ($k^2=0.06$). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.

قيم البحث

اقرأ أيضاً

[Abridged] We test the evolutionary model of cool close binaries on the observed properties of near contact binaries (NCBs). Those with a more massive component filling the Roche lobe are SD1 binaries whereas in SD2 binaries the Roche lobe filling co mponent is less massive. Our evolutionary model assumes that, following the Roche lobe overflow by the more massive component (donor), mass transfer occurs until mass ratio reversal. A binary in an initial phase of mass transfer, before mass equalization, is identified with SD1 binary. We show that the transferred mass forms an equatorial bulge around the less massive component (accretor). Its presence slows down the mass transfer rate to the value determined by the thermal time scale of the accretor, once the bulge sticks out above the Roche lobe. It means, that in a binary with a (typical) mass ratio of 0.5 the SD1 phase lasts at least 10 times longer than resulting from the standard evolutionary computations neglecting this effect. This is why we observe so many SD1 binaries. Our explanation is in contradiction to predictions identifying the SD1 phase with a broken contact phase of the Thermal Relaxation Oscillations model. The continued mass transfer, past mass equalization, results in mass ratio reversed. SD2 binaries are identified with this phase. Our model predicts that the time scales of SD1 and SD2 phases are comparable to one another. Analysis of the observations of 22 SD1 binaries, 27 SD2 binaries and 110 contact binaries (CBs) shows that relative number of both types of NCBs favors similar time scales of both phases of mass transfer. Total masses, orbital angular momenta and orbital periods of SD1 and SD2 binaries are indistinguishable from each other whereas they differ substantially from the corresponding parameters of CBs. We conclude that the results of the analysis fully support the model presented in this paper.
92 - K. Stepien 2011
A set of 27 evolutionary models of cool close binaries was computed under the assumption that their evolution is influenced by the magnetized winds. Initial periods of 1.5, 2.0 and 2.5 d were considered. For each period three values of 1.3, 1.1 and 0 .9 solar mass were taken as the initial masses of the more massive components. Here the results of the computations of the first evolutionary phase are presented, which starts from the initial conditions and ends when the more massive component reaches its critical Roche lobe. In all considered cases this phase lasts for several Gyr. For binaries with the higher total mass and/or longer initial periods this time is equal to, or longer than the main sequence life time of the more massive component. For the remaining binaries it amounts to a substantial fraction of this life time. From the statistical analysis of models, the predicted period distribution of detached binaries with periods shorter than 2 d was obtained and compared to the observed distribution from the ASAS data. An excellent agreement was obtained under the assumption that the period distribution in this range is determined solely by the mass and angular momentum loss due to the magnetized winds. This result indicates, in particular, that virtually all cool detached binaries with periods of a few tenths of a day, believed to be the immediate progenitors of W UMa-type stars, were formed from detached systems with periods around 2-3 d and that magnetic braking is the dominant formation mechanism of cool contact binaries. It operates on the time scale of several Gyr rendering them rather old, with age of 6-10 Gyr. The results of the present analysis will be used as input data to investigate the subsequent evolution of the binaries, through the mass exchange phase and contact or semi-detached configuration till the ultimate merging of the components.
We calculate the evolution and gravitational-wave emission of a spinning compact object inspiraling into a substantially more massive (non-rotating) black hole. We extend our previous model for a non-spinning binary [Phys. Rev. D 93, 064024] to inclu de the Mathisson-Papapetrou-Dixon spin-curvature force. For spin-aligned binaries we calculate the dephasing of the inspiral and associated waveforms relative to models that do not include spin-curvature effects. We find this dephasing can be either positive or negative depending on the initial separation of the binary. For binaries in which the spin and orbital angular momentum are not parallel, the orbital plane precesses and we use a more general osculating element prescription to compute inspirals.
The two objects 1SWASP J150822.80-054236.9 and 1SWASP J160156.04+202821.6 were initially detected from their SuperWASP archived light curves as candidate eclipsing binaries with periods close to the short-period cut-off of the orbital period distribu tion of main sequence binaries, at ~0.2 d. Here, using INT spectroscopic data, we confirm them as double-lined spectroscopic and eclipsing binaries, in contact configuration. Following modelling of their visual light curves and radial velocity curves, we determine their component and system parameters to precisions between ~2 and 11%. The former system contains 1.07 and 0.55 M_sun components, with radii of 0.90 and 0.68 R_sun respectively; its primary exhibits pulsations with period 1/6 the orbital period of the system. The latter contains 0.86 and 0.57 M_sun components, with radii of 0.75 and 0.63R_sun respectively.
Early B-type main-sequence (MS) stars (M$_1$ = 5-16 M$_{odot}$) with closely orbiting low-mass stellar companions (q = M$_2$/M$_1$ < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the format ion mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-mass pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries ($Delta$I$_{rm refl}$ = 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light curves, we measure short orbital periods P = 3.0-8.5 days, young ages $tau$ = 0.6-8 Myr, and small secondary masses M$_2$ = 0.8-2.4 M$_{odot}$ (q = 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g. the system with the deepest eclipse $Delta$I$_1$ = 2.8 mag and youngest age $tau$ = 0.6$pm$0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0$pm$0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q = 0.06-0.25. This is $approx$10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا