ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameters of two low-mass contact eclipsing binaries near the short-period limit

135   0   0.0 ( 0 )
 نشر من قبل Marcus Lohr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two objects 1SWASP J150822.80-054236.9 and 1SWASP J160156.04+202821.6 were initially detected from their SuperWASP archived light curves as candidate eclipsing binaries with periods close to the short-period cut-off of the orbital period distribution of main sequence binaries, at ~0.2 d. Here, using INT spectroscopic data, we confirm them as double-lined spectroscopic and eclipsing binaries, in contact configuration. Following modelling of their visual light curves and radial velocity curves, we determine their component and system parameters to precisions between ~2 and 11%. The former system contains 1.07 and 0.55 M_sun components, with radii of 0.90 and 0.68 R_sun respectively; its primary exhibits pulsations with period 1/6 the orbital period of the system. The latter contains 0.86 and 0.57 M_sun components, with radii of 0.75 and 0.63R_sun respectively.



قيم البحث

اقرأ أيضاً

185 - M. E. Lohr 2012
SuperWASP light curves for 53 W UMa-type eclipsing binary (EB) candidates, identified in previous work as being close to the contact binary short-period limit, were studied for evidence of period change. The orbital periods of most of the stars were confirmed, and period decrease, significant at more than 5 sigma, was observed in three objects: 1SWASP J174310.98+432709.6 (-0.055 pm0.003 s/yr), 1SWASP J133105.91+121538.0 (-0.075 pm0.013 s/yr) and 1SWASP J234401.81-212229.1 (-0.313 pm0.019 s/yr). The magnitudes of the observed period changes cannot be explained by magnetic braking or gravitational radiation effects, and are most likely primarily due to unstable mass transfer from primary to secondary components, possibly accompanied by unstable mass and angular momentum loss from the systems. If these period decreases persist, the systems could merge on a relatively short timescale.
Building on previous work, a new search of the SuperWASP archive was carried out to identify eclipsing binary systems near the short-period limit. 143 candidate objects were detected with orbital periods between 16000 and 20000 s, of which 97 are new discoveries. Period changes significant at 1 sigma or more were detected in 74 of these objects, and in 38 the changes were significant at 3 sigma or more. The significant period changes observed followed an approximately normal distribution with a half-width at half-maximum of ~0.1 s/yr. There was no apparent relationship between period length and magnitude or direction of period change. Amongst several interesting individual objects studied, 1SWASP J093010.78+533859.5 is presented as a new doubly eclipsing quadruple system, consisting of a contact binary with a 19674.575 s period and an Algol-type binary with a 112799.109 s period, separated by 66.1 AU, being the sixth known system of this type.
100 - F. Acerbi , R. Michel , C. Barani 2019
We present the results of our study of the eclipsing binary systems CSS J112237.1+395219, LINEAR 1286561 and LINEAR 2602707 based on new CCD $B$, $V$, $R_c$ and $I_c$ complete light curves. The ultra-short period nature of the stars citep{Drake2014} is confirmed and the systems periods are revised. The light curves were modelled using the 2005 version of the Wilson-Devinney code. When necessary, cool spots on the surface of the primary component were introduced to account for asymmetries in the light curves. As a result, we found that CSS J112237.1+395219 is a W UMa type contact binary system belonging to W subclass with a mass ratio of $q=1.61$ and a shallow degree of contact of 14.8% where the primary component is hotter than the secondary one by $500K$. LINEAR 1286561 and LINEAR 2602707 are detached binary systems with mass ratios $q=3.467$ and $q=0.987$ respectively. These detached systems are low-mass M-type eclipsing binaries of similar temperatures. The marginal contact, the fill-out factor and the temperature difference between components of CSS J112237.1+395219 suggest that this system may be at a key evolutionary state predicted by the Thermal Relaxation Oscillation theory (TRO). From the estimated absolute parameters we conclude that our systems share common properties with others ultra-short period binaries.
We present results of our study of the long-period eclipsing binary star NN Delphini (hereafter NN Del). The results are based on spectral data obtained with the HRS echelle spectrograph of the Southern African Large Telescope (SALT). Our constructed velocity curve is based on 19 spectra obtained between 2017 and 2019 years and covers all phases of the binarys orbit. The orbital period, P=99.252 days, was determined from our spectral data and coincides with the period determined in previous studies, as well as the system eccentricity of $e=0.517$. Calculated velocity amplitudes of both components allow us to determine the masses of both system components M_1 = 1.320 M_sun and M_2 = 1.433 M_sun with the accuracy about of one percent (0.8% and 1.1%), respectively. Luminosities of both components are presented as L_1 = 4.164 L_sun and L_2 = 6.221 L_sun, and the effective temperatures of both components were directly evaluated (T_eff = 6545~K and T_eff = 6190~K) together with the metallicity of the system [Fe/H] = -0.19 dex and its color excess E(B-V)=0.026~mag. Comparison with evolutionary tracks shows that the system age is 2.25+/-0.19 Gyr, and both components are on the main sequence and have not yet passed the turn point. Spectral type is F5V for the hotter component and F8V for another one.
101 - Kai Li , Qi-Qi Xia , Chun-Hwey Kim 2021
High precision CCD observations of six totally eclipsing contact binaries were presented and analyzed. It is found that only one target is an A-type contact binary (V429 Cam), while the others are W-type contact ones. By analyzing the times of light minima, we discovered that two of them exhibit secular period increase while three manifest long-term period decrease. For V1033 Her, a cyclic variation superimposed on the long-term increase was discovered. By comparing the Gaia distances with those calculated by the absolute parameters of 173 contact binaries, we found that Gaia distance can be applied to estimate absolute parameters for most contact binaries. The absolute parameters of our six targets were estimated by using their Gaia distances. The evolutionary status of contact binaries was studied, we found that the A- and W- subtype contact binaries may have different formation channels. The relationship between the spectroscopic and photometric mass ratios for 101 contact binaries was presented. It is discovered that the photometric mass ratios are in good agreement with the spectroscopic ones for almost all the totally eclipsing systems, which is corresponding to the results derived by Pribulla et al. and Terrell & Wilson.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا