ترغب بنشر مسار تعليمي؟ اضغط هنا

Creating moving gap solitons in spin-orbit-coupled Bose-Einstein condensates

184   0   0.0 ( 0 )
 نشر من قبل Yongping Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple and efficient method to create gap solitons is proposed in a spin-orbit-coupled spin-1 Bose-Einstein condensate. We find that a free expansion along the spin-orbit coupling dimension can generate two moving gap solitons, which are identified from a generalized massive Thirring model. The dynamics of gap solitons can be controlled by adjusting spin-orbit coupling parameters.

قيم البحث

اقرأ أيضاً

140 - Lin Wen , Q. Sun , Yu Chen 2016
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of soli tons is governed by a nonlinear Bloch equation. The spin dynamics influences the orbital motion of the solitons leading to the spin-orbit effects in the dynamics of the macroscopic quantum objects (mean-field solitons). The latter perform oscillations with a frequency determined by the SOC, Raman coupling, and intrinsic nonlinearity. These findings reveal unique features of solitons affected by the SOC, which is confirmed by analytical considerations and numerical simulations of the underlying Gross-Pitaevskii equations.
The fragmentation of spin-orbit coupled spin-1 Bose gas with a weak interaction in external harmonic trap is explored by both exact diagonalization and mean-field theory. This fragmentation tendency, which originates from the total angular momentum c onservation, is affected obviously by the spin-orbit coupling strength and the spin-dependent interaction. Strong spin-orbit interaction raises the inverse participation ratio, which describes the number of significantly occupied single-particle states. As the spin-dependent interaction changes from anti-ferromagnetic to ferromagnetic, the peak values in the inverse participation ratio become lower. Without the confinement of the appointed total angular momentum, the condensate chooses a zero or finite total angular momentum ground state, which is determined by both the interaction and the spin-orbit coupling strength.
We study magnetic solitons, solitary waves of spin polarization (i.e., magnetization), in binary Bose-Einstein condensates in the presence of Rabi coupling. We show that the system exhibits two types of magnetic solitons, called $2pi$ and $0pi$ solit ons, characterized by a different behavior of the relative phase between the two spin components. $2pi$ solitons exhibit a $2pi$ jump of the relative phase, independent of their velocity, the static domain wall explored by Son and Stephanov being an example of such $2pi$ solitons with vanishing velocity and magnetization. $0pi$ solitons instead do not exhibit any asymptotic jump in the relative phase. Systematic results are provided for both types of solitons in uniform matter. Numerical calculations in the presence of a one-dimensional harmonic trap reveal that a $2pi$ soliton evolves in time into a $0pi$ soliton, and vice versa, oscillating around the center of the trap. Results for the effective mass, the Landau critical velocity, and the role of the transverse confinement are also discussed.
Solitons in multi-component Bose-Einstein condensates have been paid much attention, due to the stability and wide applications of them. The exact soliton solutions are usually obtained for integrable models. In this paper, we present four families o f exact spin soliton solutions for non-integrable cases in spin-1 Bose-Einstein Condensates. The whole particle density is uniform for the spin solitons, which is in sharp contrast to the previously reported solitons of integrable models. The spectrum stability analysis and numerical simulation indicate the spin solitons can exist stably. The spin density redistribution happens during the collision process, which depends on the relative phase and relative velocity between spin solitons. The non-integrable properties of the systems can bring spin solitons experience weak amplitude and location oscillations after collision. These stable spin soliton excitations could be used to study the negative inertial mass of solitons, the dynamics of soliton-impurity systems, and the spin dynamics in Bose-Einstein condensates.
We numerically investigate low-energy stationary states of pseudospin-1 Bose-Einstein condensates in the presence of Rashba-Dresselhaus-type spin-orbit coupling. We show that for experimentally feasible parameters and strong spin-orbit coupling, the ground state is a square vortex lattice irrespective of the nature of the spin-dependent interactions. For weak spin-orbit coupling, the lowest-energy state may host a single vortex. Furthermore, we analytically derive constraints that explain why certain stationary states do not emerge as ground states. Importantly, we show that the distinct stationary states can be observed experimentally by standard time-of-flight spinindependent absorption imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا