ﻻ يوجد ملخص باللغة العربية
We study magnetic solitons, solitary waves of spin polarization (i.e., magnetization), in binary Bose-Einstein condensates in the presence of Rabi coupling. We show that the system exhibits two types of magnetic solitons, called $2pi$ and $0pi$ solitons, characterized by a different behavior of the relative phase between the two spin components. $2pi$ solitons exhibit a $2pi$ jump of the relative phase, independent of their velocity, the static domain wall explored by Son and Stephanov being an example of such $2pi$ solitons with vanishing velocity and magnetization. $0pi$ solitons instead do not exhibit any asymptotic jump in the relative phase. Systematic results are provided for both types of solitons in uniform matter. Numerical calculations in the presence of a one-dimensional harmonic trap reveal that a $2pi$ soliton evolves in time into a $0pi$ soliton, and vice versa, oscillating around the center of the trap. Results for the effective mass, the Landau critical velocity, and the role of the transverse confinement are also discussed.
We show theoretically that periodic density patterns are stabilized in two counter-propagating Bose-Einstein condensates of atoms in different hyperfine states under Rabi coupling. In the presence of coupling, the relative velocity between two compon
A simple and efficient method to create gap solitons is proposed in a spin-orbit-coupled spin-1 Bose-Einstein condensate. We find that a free expansion along the spin-orbit coupling dimension can generate two moving gap solitons, which are identified
We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a harmonically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin component and their relative local phase via an interferomet
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of soli
Long-lived, spatially localized, and temporally oscillating nonlinear excitations are predicted by numerical simulation of coupled Gross-Pitaevskii equations. These oscillons closely resemble the time-periodic breather solutions of the sine-Gordon eq