ﻻ يوجد ملخص باللغة العربية
Using the weak gravitational lensing data from the Hyper Suprime-Cam Subaru Strategic Program (HSC survey), we study the potential of different stellar mass estimates in tracing halo mass. We consider galaxies with $log {M_{star}/M_{odot}}>11.5$ at 0.2 < z < 0.5 with carefully measured light profiles and clusters from the redMaPPer and CAMIRA richness-based algorithms. We devise a method (the TopN test) to evaluate the scatter in the halo mass-observable relation for different tracers and inter-compare halo mass proxies in four number density bins using stacked galaxy-galaxy lensing profiles. This test reveals three key findings. The stellar mass based on cModel photometry or aperture luminosity within R<30 kpc is a poor proxy of halo mass. In contrast, the stellar mass of the outer envelope is an excellent halo mass proxy. The stellar mass within R=[50,100] kpc, M*[50,100], has performance comparable to the state-of-the-art richness-based cluster finders at $log{M_{rm vir}/M_{odot}}>14.0$ and could be a better halo mass tracer at lower halo masses. Finally, using N-body simulations, we find that the lensing profiles of massive halos selected by M*[50,100] are consistent with the expectation for a sample without projection or mis-centering effects. On the other hand, Richness-selected clusters display an excess at R~1 Mpc in their lensing profiles, which may suggest a more significant impact from selection biases. These results suggest that Mstar-based tracers have distinct advantages in identifying massive halos, which could open up new avenues for cluster cosmology.
Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from photometric catalogs. We consider various modifications to the red-sequence matched filter richness estimator of Rozo et al. (2009), and evaluate
Recent observations reveal that, at a given stellar mass, blue galaxies tend to live in haloes with lower mass while red galaxies live in more massive host haloes. The physical driver behind this is still unclear because theoretical models predict th
We obtained precise line-of-sight radial velocities of 23 member stars of the remote halo globular cluster Palomar 4 (Pal 4) using the High Resolution Echelle Spectrograph (HIRES) at the Keck I telescope. We also measured the mass function of the clu
Using deep images from the Hyper Suprime-Cam (HSC) survey and taking advantage of its unprecedented weak lensing capabilities, we reveal a remarkably tight connection between the stellar mass distribution of massive central galaxies and their host da
We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope ima