ﻻ يوجد ملخص باللغة العربية
Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from photometric catalogs. We consider various modifications to the red-sequence matched filter richness estimator of Rozo et al. (2009), and evaluate their impact on the scatter in X-ray luminosity at fixed richness. Most significantly, we find that deeper luminosity cuts can reduce the recovered scatter, finding that sigma_lnLX|lambda=0.63+/-0.02 for clusters with M_500c >~ 1.6e14 h_70^-1 M_sun. The corresponding scatter in mass at fixed richness is sigma_lnM|lambda ~ 0.2-0.3 depending on the richness, comparable to that for total X-ray luminosity. We find that including blue galaxies in the richness estimate increases the scatter, as does weighting galaxies by their optical luminosity. We further demonstrate that our richness estimator is very robust. Specifically, the filter employed when estimating richness can be calibrated directly from the data, without requiring a-priori calibrations of the red-sequence. We also demonstrate that the recovered richness is robust to up to 50% uncertainties in the galaxy background, as well as to the choice of photometric filter employed, so long as the filters span the 4000 A break of red-sequence galaxies. Consequently, our richness estimator can be used to compare richness estimates of different clusters, even if they do not share the same photometric data. Appendix 1 includes easy-bake instructions for implementing our optimal richness estimator, and we are releasing an implementation of the code that works with SDSS data, as well as an augmented maxBCG catalog with the lambda richness measured for each cluster.
Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this
Using the weak gravitational lensing data from the Hyper Suprime-Cam Subaru Strategic Program (HSC survey), we study the potential of different stellar mass estimates in tracing halo mass. We consider galaxies with $log {M_{star}/M_{odot}}>11.5$ at 0
The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Dig
Determining the scaling relations between galaxy cluster observables requires large samples of uniformly observed clusters. We measure the mean X-ray luminosity--optical richness (L_X--N_200) relation for an approximately volume-limited sample of mor
Identifying galaxy clusters through overdensities of galaxies in photometric surveys is the oldest and arguably the most economic and mass-sensitive detection method, compared to X-ray and Sunyaev-Zeldovich Effect surveys that detect the hot intraclu