ﻻ يوجد ملخص باللغة العربية
This paper aims to unify spatial dependency and temporal dependency in a non-Euclidean space while capturing the inner spatial-temporal dependencies for spatial-temporal graph data. For spatial-temporal attribute entities with topological structure, the space-time is consecutive and unified while each nodes current status is influenced by its neighbors past states over variant periods of each neighbor. Most spatial-temporal neural networks study spatial dependency and temporal correlation separately in processing, gravely impaired the space-time continuum, and ignore the fact that the neighbors temporal dependency period for a node can be delayed and dynamic. To model this actual condition, we propose TraverseNet, a novel spatial-temporal graph neural network, viewing space and time as an inseparable whole, to mine spatial-temporal graphs while exploiting the evolving spatial-temporal dependencies for each node via message traverse mechanisms. Experiments with ablation and parameter studies have validated the effectiveness of the proposed TraverseNets, and the detailed implementation can be found from https://github.com/nnzhan/TraverseNet.
Graph neural networks (GNNs) are a powerful inductive bias for modelling algorithmic reasoning procedures and data structures. Their prowess was mainly demonstrated on tasks featuring Markovian dynamics, where querying any associated data structure d
Graph Neural Network (GNN) has been demonstrated its effectiveness in dealing with non-Euclidean structural data. Both spatial-based and spectral-based GNNs are relying on adjacency matrix to guide message passing among neighbors during feature aggre
We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approxima
Graph neural networks (GNNs) emerged recently as a standard toolkit for learning from data on graphs. Current GNN designing works depend on immense human expertise to explore different message-passing mechanisms, and require manual enumeration to det
Graph convolution networks, like message passing graph convolution networks (MPGCNs), have been a powerful tool in representation learning of networked data. However, when data is heterogeneous, most architectures are limited as they employ a single