ﻻ يوجد ملخص باللغة العربية
We give an axiomatic foundation to $Lambda$-quantiles, a family of generalized quantiles introduced by Frittelli et al. (2014) under the name of Lambda Value at Risk. Under mild assumptions, we show that these functionals are characterized by a property that we call locality, that means that any change in the distribution of the probability mass that arises entirely above or below the value of the $Lambda$-quantile does not modify its value. We compare with a related axiomatization of the usual quantiles given by Chambers (2009), based on the stronger property of ordinal covariance, that means that quantiles are covariant with respect to increasing transformations. Further, we present a systematic treatment of the properties of $Lambda$-quantiles, refining some of the results of Frittelli et al. (2014) and Burzoni et al. (2017) and showing that in the case of a nonincreasing $Lambda$ the properties of $Lambda$-quantiles closely resemble those of the usual quantiles.
Risk contributions of portfolios form an indispensable part of risk adjusted performance measurement. The risk contribution of a portfolio, e.g., in the Euler or Aumann-Shapley framework, is given by the partial derivatives of a risk measure applied
In multivariate extreme value theory (MEVT), the focus is on analysis outside of the observable sampling zone, which implies that the region of interest is associated to high risk levels. This work provides tools to include directional notions into t
Consider the empirical measure, $hat{mathbb{P}}_N$, associated to $N$ i.i.d. samples of a given probability distribution $mathbb{P}$ on the unit interval. For fixed $mathbb{P}$ the Wasserstein distance between $hat{mathbb{P}}_N$ and $mathbb{P}$ is a
Randomization (a.k.a. permutation) inference is typically interpreted as testing Fishers sharp null hypothesis that all effects are exactly zero. This hypothesis is often criticized as uninteresting and implausible. We show, however, that many random
We test three common information criteria (IC) for selecting the order of a Hawkes process with an intensity kernel that can be expressed as a mixture of exponential terms. These processes find application in high-frequency financial data modelling.