ترغب بنشر مسار تعليمي؟ اضغط هنا

Hocalarim: Mining Turkish Student Reviews

139   0   0.0 ( 0 )
 نشر من قبل Ahmet Yavuz Uluslu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Hocalarim (MyProfessors), the largest student review dataset available for the Turkish language. It consists of over 5000 professor reviews left online by students, with different aspects of education rated on a scale of 1 to 5 stars. We investigate the properties of the dataset and present its statistics. We examine the impact of students institution type on their ratings and the correlation of students bias to give positive or negative feedback.



قيم البحث

اقرأ أيضاً

Peer reviewing is a central process in modern research and essential for ensuring high quality and reliability of published work. At the same time, it is a time-consuming process and increasing interest in emerging fields often results in a high revi ew workload, especially for senior researchers in this area. How to cope with this problem is an open question and it is vividly discussed across all major conferences. In this work, we propose an Argument Mining based approach for the assistance of editors, meta-reviewers, and reviewers. We demonstrate that the decision process in the field of scientific publications is driven by arguments and automatic argument identification is helpful in various use-cases. One of our findings is that arguments used in the peer-review process differ from arguments in other domains making the transfer of pre-trained models difficult. Therefore, we provide the community with a new peer-review dataset from different computer science conferences with annotated arguments. In our extensive empirical evaluation, we show that Argument Mining can be used to efficiently extract the most relevant parts from reviews, which are paramount for the publication decision. The process remains interpretable since the extracted arguments can be highlighted in a review without detaching them from their context.
User reviews of mobile apps often contain complaints or suggestions which are valuable for app developers to improve user experience and satisfaction. However, due to the large volume and noisy-nature of those reviews, manually analyzing them for use ful opinions is inherently challenging. To address this problem, we propose MARK, a keyword-based framework for semi-automated review analysis. MARK allows an analyst describing his interests in one or some mobile apps by a set of keywords. It then finds and lists the reviews most relevant to those keywords for further analysis. It can also draw the trends over time of those keywords and detect their sudden changes, which might indicate the occurrences of serious issues. To help analysts describe their interests more effectively, MARK can automatically extract keywords from raw reviews and rank them by their associations with negative reviews. In addition, based on a vector-based semantic representation of keywords, MARK can divide a large set of keywords into more cohesive subsets, or suggest keywords similar to the selected ones.
Prior work has revealed that positive words occur more frequently than negative words in human expressions, which is typically attributed to positivity bias, a tendency for people to report positive views of reality. But what about the language used in negative reviews? Consistent with prior work, we show that English negative reviews tend to contain more positive words than negative words, using a variety of datasets. We reconcile this observation with prior findings on the pragmatics of negation, and show that negations are commonly associated with positive words in negative reviews. Furthermore, in negative reviews, the majority of sentences with positive words express negative opinions based on sentiment classifiers, indicating some form of negation.
Systematic reviews, which entail the extraction of data from large numbers of scientific documents, are an ideal avenue for the application of machine learning. They are vital to many fields of science and philanthropy, but are very time-consuming an d require experts. Yet the three main stages of a systematic review are easily done automatically: searching for documents can be done via APIs and scrapers, selection of relevant documents can be done via binary classification, and extraction of data can be done via sequence-labelling classification. Despite the promise of automation for this field, little research exists that examines the various ways to automate each of these tasks. We construct a pipeline that automates each of these aspects, and experiment with many human-time vs. system quality trade-offs. We test the ability of classifiers to work well on small amounts of data and to generalise to data from countries not represented in the training data. We test different types of data extraction with varying difficulty in annotation, and five different neural architectures to do the extraction. We find that we can get surprising accuracy and generalisability of the whole pipeline system with only 2 weeks of human-expert annotation, which is only 15% of the time it takes to do the whole review manually and can be repeated and extended to new data with no additional effort.
Online reviews play an integral part for success or failure of businesses. Prior to purchasing services or goods, customers first review the online comments submitted by previous customers. However, it is possible to superficially boost or hinder som e businesses through posting counterfeit and fake reviews. This paper explores a natural language processing approach to identify fake reviews. We present a detailed analysis of linguistic features for distinguishing fake and trustworthy online reviews. We study 15 linguistic features and measure their significance and importance towards the classification schemes employed in this study. Our results indicate that fake reviews tend to include more redundant terms and pauses, and generally contain longer sentences. The application of several machine learning classification algorithms revealed that we were able to discriminate fake from real reviews with high accuracy using these linguistic features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا